Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Nat Commun ; 15(1): 179, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167814

Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupo Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.


Microbiota , New Zealand , RNA, Ribosomal, 16S/genetics , Phylogeny , Metagenome
2.
Inflamm Bowel Dis ; 29(1): 125-139, 2023 01 05.
Article En | MEDLINE | ID: mdl-36112501

BACKGROUND: Numerous studies have examined the gut microbial ecology of patients with Crohn's disease (CD) and ulcerative colitis, but inflammatory bowel disease-associated taxa and ecological effect sizes are not consistent between studies. METHODS: We systematically searched PubMed and Google Scholar and performed a meta-analysis of 13 studies to analyze how variables such as sample type (stool, biopsy, and lavage) affect results in inflammatory bowel disease gut microbiome studies, using uniform bioinformatic methods for all primary data. RESULTS: Reduced alpha diversity was a consistent feature of both CD and ulcerative colitis but was more pronounced in CD. Disease contributed significantly variation in beta diversity in most studies, but effect size varied, and the effect of sample type was greater than the effect of disease. Fusobacterium was the genus most consistently associated with CD, but disease-associated genera were mostly inconsistent between studies. Stool studies had lower heterogeneity than biopsy studies, especially for CD. CONCLUSIONS: Our results indicate that sample type variation is an important contributor to study variability that should be carefully considered during study design, and stool is likely superior to biopsy for CD studies due to its lower heterogeneity.


To assess reproducibility in inflammatory bowel disease microbiome research, we performed a meta-analysis of 13 inflammatory bowel disease studies, measuring effects of disease and sample type. Crohn's disease studies were more heterogeneous than ulcerative colitis studies, and sample type variation was a major contributor to inconsistency.


Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/pathology , Consensus , Crohn Disease/pathology , Feces
3.
Bioinformatics ; 38(Suppl 1): i378-i385, 2022 06 24.
Article En | MEDLINE | ID: mdl-35758795

MOTIVATION: Modern biological screens yield enormous numbers of measurements, and identifying and interpreting statistically significant associations among features are essential. In experiments featuring multiple high-dimensional datasets collected from the same set of samples, it is useful to identify groups of associated features between the datasets in a way that provides high statistical power and false discovery rate (FDR) control. RESULTS: Here, we present a novel hierarchical framework, HAllA (Hierarchical All-against-All association testing), for structured association discovery between paired high-dimensional datasets. HAllA efficiently integrates hierarchical hypothesis testing with FDR correction to reveal significant linear and non-linear block-wise relationships among continuous and/or categorical data. We optimized and evaluated HAllA using heterogeneous synthetic datasets of known association structure, where HAllA outperformed all-against-all and other block-testing approaches across a range of common similarity measures. We then applied HAllA to a series of real-world multiomics datasets, revealing new associations between gene expression and host immune activity, the microbiome and host transcriptome, metabolomic profiling and human health phenotypes. AVAILABILITY AND IMPLEMENTATION: An open-source implementation of HAllA is freely available at http://huttenhower.sph.harvard.edu/halla along with documentation, demo datasets and a user group. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Microbiota , Transcriptome
4.
Wound Repair Regen ; 30(6): 636-651, 2022 11.
Article En | MEDLINE | ID: mdl-35212086

Xenopus laevis tadpoles can regenerate functional tails, containing the spinal cord, notochord, muscle, fin, blood vessels and nerves, except for a brief refractory period at around 1 week of age. At this stage, amputation of the tadpole's tail may either result in scarless wound healing or the activation of a regeneration programme, which replaces the lost tissues. We recently demonstrated a link between bacterial lipopolysaccharides and successful tail regeneration in refractory stage tadpoles and proposed that this could result from lipopolysaccharides binding to Toll-like receptor 4 (TLR4). Here, we have used 16S rRNA sequencing to show that the tadpole skin microbiome is highly variable between sibships and that the community can be altered by raising embryos in the antibiotic gentamicin. Six Gram-negative genera, including Delftia and Chryseobacterium, were over-represented in tadpoles that underwent tail regeneration. Lipopolysaccharides purified from a commensal Chryseobacterium spp. XDS4, an exogenous Delftia spp. or Escherichia coli, could significantly increase the number of antibiotic-raised tadpoles that attempted regeneration. Conversely, the quality of regeneration was impaired in native-raised tadpoles exposed to the antagonistic lipopolysaccharide of Rhodobacter sphaeroides. Editing TLR4 using CRISPR/Cas9 also reduced regeneration quality, but not quantity, at the level of the cohort. However, we found that the editing level of individual tadpoles was a poor predictor of regenerative outcome. In conclusion, our results suggest that variable regeneration in refractory stage tadpoles depends at least in part on the skin microbiome and lipopolysaccharide signalling, but that signalling via TLR4 cannot account for all of this effect.


Lipopolysaccharides , Microbiota , Animals , Anti-Bacterial Agents , Larva/physiology , Lipopolysaccharides/pharmacology , RNA, Ribosomal, 16S , Toll-Like Receptor 4/metabolism , Wound Healing , Xenopus laevis/genetics , Xenopus laevis/metabolism
5.
Nucleic Acids Res ; 50(1): 160-174, 2022 01 11.
Article En | MEDLINE | ID: mdl-34928385

During infection, phages manipulate bacteria to redirect metabolism towards viral proliferation. To counteract phages, some bacteria employ CRISPR-Cas systems that provide adaptive immunity. While CRISPR-Cas mechanisms have been studied extensively, their effects on both the phage and the host during phage infection remains poorly understood. Here, we analysed the infection of Serratia by a siphovirus (JS26) and the transcriptomic response with, or without type I-E or I-F CRISPR-Cas immunity. In non-immune Serratia, phage infection altered bacterial metabolism by upregulating anaerobic respiration and amino acid biosynthesis genes, while flagella production was suppressed. Furthermore, phage proliferation required a late-expressed viral Cas4 homologue, which did not influence CRISPR adaptation. While type I-E and I-F immunity provided robust defence against phage infection, phage development still impacted the bacterial host. Moreover, DNA repair and SOS response pathways were upregulated during type I immunity. We also discovered that the type I-F system is controlled by a positive autoregulatory feedback loop that is activated upon phage targeting during type I-F immunity, leading to a controlled anti-phage response. Overall, our results provide new insight into phage-host dynamics and the impact of CRISPR immunity within the infected cell.


CRISPR-Cas Systems , Serratia/genetics , Stress, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/pathogenicity , Flagella/metabolism , Serratia/metabolism , Serratia/virology
6.
ISME J ; 13(10): 2617-2632, 2019 10.
Article En | MEDLINE | ID: mdl-31243332

Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H2), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used comparative genomic, metatranscriptomic and co-culture-based approaches to gain a system-wide understanding of the organisms and pathways responsible for ruminal H2 metabolism. Two-thirds of sequenced rumen bacterial and archaeal genomes encode enzymes that catalyse H2 production or consumption, including 26 distinct hydrogenase subgroups. Metatranscriptomic analysis confirmed that these hydrogenases are differentially expressed in sheep rumen. Electron-bifurcating [FeFe]-hydrogenases from carbohydrate-fermenting Clostridia (e.g., Ruminococcus) accounted for half of all hydrogenase transcripts. Various H2 uptake pathways were also expressed, including methanogenesis (Methanobrevibacter), fumarate and nitrite reduction (Selenomonas), and acetogenesis (Blautia). Whereas methanogenesis-related transcripts predominated in high methane yield sheep, alternative uptake pathways were significantly upregulated in low methane yield sheep. Complementing these findings, we observed significant differential expression and activity of the hydrogenases of the hydrogenogenic cellulose fermenter Ruminococcus albus and the hydrogenotrophic fumarate reducer Wolinella succinogenes in co-culture compared with pure culture. We conclude that H2 metabolism is a more complex and widespread trait among rumen microorganisms than previously recognised. There is evidence that alternative hydrogenotrophs, including acetogenic and respiratory bacteria, can prosper in the rumen and effectively compete with methanogens for H2. These findings may help to inform ongoing strategies to mitigate methane emissions by increasing flux through alternative H2 uptake pathways, including through animal selection, dietary supplementation and methanogenesis inhibitors.


Archaea/metabolism , Bacteria/metabolism , Hydrogen/metabolism , Methane/metabolism , Rumen/microbiology , Ruminants/microbiology , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , Cellulose/metabolism , Euryarchaeota/genetics , Fermentation , Hydrogenase/genetics , Hydrogenase/metabolism , Rumen/metabolism , Ruminants/metabolism
7.
Appl Environ Microbiol ; 85(13)2019 07 01.
Article En | MEDLINE | ID: mdl-31028029

Enterococcus faecalis and Enterococcus faecium are human and animal gut commensals. Vancomycin-resistant enterococci (VRE) are important opportunistic pathogens with limited treatment options. Historically, the glycopeptide antibiotics vancomycin and avoparcin selected for the emergence of vancomycin resistance in human and animal isolates, respectively, resulting in global cessation of avoparcin use between 1997 and 2000. To better understand human- and animal-associated VRE strains in the postavoparcin era, we sequenced the genomes of 231 VRE isolates from New Zealand (NZ; 75 human clinical, 156 poultry) cultured between 1998 and 2009. E. faecium lineages and their antibiotic resistance carriage patterns strictly delineated between agricultural and human reservoirs, with bacitracin resistance ubiquitous in poultry but absent in clinical E. faecium strains. In contrast, one E. faecalis lineage (ST108) predominated in both poultry and human isolates in the 3 years following avoparcin discontinuation. Both phylogenetic and antimicrobial susceptibility (i.e., ubiquitous bacitracin resistance in both poultry and clinical ST108 isolates) analyses suggest an agricultural origin for the ST108 lineage. VRE isolate resistomes were carried on multiple, heterogeneous plasmids. In some isolate genomes, bacitracin, erythromycin, and vancomycin resistance elements were colocalized, indicating multiple potentially linked selection mechanisms.IMPORTANCE Historical antimicrobial use in NZ agriculture has driven the evolution of ST108, a VRE lineage carrying a range of clinically relevant antimicrobial resistances. The persistence of this lineage in NZ for over a decade indicates that coselection may be an important stabilizing mechanism for its persistence.


Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/drug effects , Vancomycin Resistance/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin/pharmacology , Enterococcus faecalis/classification , Enterococcus faecalis/genetics , Enterococcus faecium/classification , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Microbial Sensitivity Tests , New Zealand , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/genetics
8.
J Breath Res ; 13(3): 036010, 2019 05 31.
Article En | MEDLINE | ID: mdl-31022704

Orthodontic braces can impede oral hygiene and promote halitosis. The aim of the study was to investigate the effect of the oral probiotic Streptococcus salivarius M18 on oral hygiene indices and halitosis in patients wearing orthodontic braces. The study was a prospective, randomized, triple-blind, placebo-controlled trial. Patients undergoing fixed orthodontic treatment were randomly allocated to a probiotic group (n = 32) and a placebo group (n = 32). Patients consumed 2 lozenges d-1 for one month. Assessments were taken at baseline, at the end of the intervention, and at a 3 month follow-up. The outcome measures were plaque index (PI), gingival index (GI) and halitosis-causing volatile sulfur compound (VSC) levels. The dental biofilms before and after the intervention were analyzed utilizing next-generation sequencing of bacterial 16S rRNA genes. PI and GI scores were not significantly influenced by the probiotic intervention (intervention × time: p > 0.05). The level of VSCs decreased significantly in both the probiotic group (VSC reduction = -8.5%, 95%CI = -7.4% to -9.1%, p = 0.015) and the placebo group (-6.5%, 95%CI = -6.0% to -7.4%, p = 0.039) after 1 month intervention. However, at the 3 month follow-up, the VSC levels in the placebo group returned to baseline levels whereas those in the probiotic group decreased further (-10.8%, 95%CI = -10.5% to -12.9%, p = 0.005). Time, but not treatment, was associated with the decrease in microbial community alpha diversity and a modest effect on beta diversity. Oral probiotic S. salivarius M18 reduced the level of halitosis in patients with orthodontic braces, but had minimal effects on PI, GI and dental biofilm microflora.


Halitosis/microbiology , Halitosis/therapy , Orthodontic Brackets , Probiotics/administration & dosage , Probiotics/therapeutic use , Administration, Oral , Adolescent , Adult , Breath Tests , Child , Dental Plaque Index , Double-Blind Method , Female , Humans , Male , Metagenomics , Microbiota/genetics , Periodontal Index , Placebos , Prospective Studies , RNA, Ribosomal, 16S/genetics , Sulfur Compounds/analysis , Young Adult
9.
Am J Epidemiol ; 188(6): 1027-1030, 2019 06 01.
Article En | MEDLINE | ID: mdl-30649168

Alterations in the composition of the microbiota have been implicated in many diseases. The Human Microbiome Project (HMP) provides a comprehensive reference data set of the "normal" human microbiome of 242 healthy adults at 5 major body sites. The HMP used both 16S ribosomal RNA gene sequencing and whole-genome metagenomic sequencing to profile the subjects' microbial communities. However, accessing and analyzing the HMP data set still presents technical and bioinformatic challenges, given that researchers must import the microbiome data, integrate phylogenetic trees, and access and merge public and restricted metadata. The HMP16SData R/Bioconductor package developed by Schiffer et al. (Am J Epidemiol. 2019;188(6):1023-1026) greatly simplifies access to the HMP data by combining 16S taxonomic abundance data, public patient metadata, and phylogenetic trees as a single data object. The authors also provide an interface for users with approved Database of Genotypes and Phenotypes (dbGaP) projects to easily retrieve and merge the controlled-access HMP metadata. This package has a broad range of appeal to researchers across disciplines and with various levels of expertise in using R and/or other statistical tools, which translates to improved data accessibility for public health research, with data from healthy individuals serving as a reference for disease-associated studies.


Microbiota , Computational Biology , Humans , Metagenome , Phylogeny , RNA, Ribosomal, 16S
10.
Cell ; 176(3): 649-662.e20, 2019 01 24.
Article En | MEDLINE | ID: mdl-30661755

The body-wide human microbiome plays a role in health, but its full diversity remains uncharacterized, particularly outside of the gut and in international populations. We leveraged 9,428 metagenomes to reconstruct 154,723 microbial genomes (45% of high quality) spanning body sites, ages, countries, and lifestyles. We recapitulated 4,930 species-level genome bins (SGBs), 77% without genomes in public repositories (unknown SGBs [uSGBs]). uSGBs are prevalent (in 93% of well-assembled samples), expand underrepresented phyla, and are enriched in non-Westernized populations (40% of the total SGBs). We annotated 2.85 M genes in SGBs, many associated with conditions including infant development (94,000) or Westernization (106,000). SGBs and uSGBs permit deeper microbiome analyses and increase the average mappability of metagenomic reads from 67.76% to 87.51% in the gut (median 94.26%) and 65.14% to 82.34% in the mouth. We thus identify thousands of microbial genomes from yet-to-be-named species, expand the pangenomes of human-associated microbes, and allow better exploitation of metagenomic technologies.


Metagenome/genetics , Metagenomics/methods , Microbiota/genetics , Big Data , Genetic Variation/genetics , Geography , Humans , Life Style , Phylogeny , Sequence Analysis, DNA/methods
11.
PeerJ ; 7: e6160, 2019.
Article En | MEDLINE | ID: mdl-30631651

Metagenomic and meta-barcode DNA sequencing has rapidly become a widely-used technique for investigating a range of questions, particularly related to health and environmental monitoring. There has also been a proliferation of bioinformatic tools for analysing metagenomic and amplicon datasets, which makes selecting adequate tools a significant challenge. A number of benchmark studies have been undertaken; however, these can present conflicting results. In order to address this issue we have applied a robust Z-score ranking procedure and a network meta-analysis method to identify software tools that are consistently accurate for mapping DNA sequences to taxonomic hierarchies. Based upon these results we have identified some tools and computational strategies that produce robust predictions.

12.
Nat Commun ; 9(1): 2876, 2018 07 23.
Article En | MEDLINE | ID: mdl-30038374

Geothermal springs are model ecosystems to investigate microbial biogeography as they represent discrete, relatively homogenous habitats, are distributed across multiple geographical scales, span broad geochemical gradients, and have reduced metazoan interactions. Here, we report the largest known consolidated study of geothermal ecosystems to determine factors that influence biogeographical patterns. We measured bacterial and archaeal community composition, 46 physicochemical parameters, and metadata from 925 geothermal springs across New Zealand (13.9-100.6 °C and pH < 1-9.7). We determined that diversity is primarily influenced by pH at temperatures <70 °C; with temperature only having a significant effect for values >70 °C. Further, community dissimilarity increases with geographic distance, with niche selection driving assembly at a localised scale. Surprisingly, two genera (Venenivibrio and Acidithiobacillus) dominated in both average relative abundance (11.2% and 11.1%, respectively) and prevalence (74.2% and 62.9%, respectively). These findings provide an unprecedented insight into ecological behaviour in geothermal springs, and a foundation to improve the characterisation of microbial biogeographical processes.


Archaea/classification , Bacteria/classification , Ecosystem , Hot Springs/microbiology , Archaea/genetics , Bacteria/genetics , Classification , Geography , Hot Temperature , Hydrogen-Ion Concentration , Microbiota , New Zealand , Prevalence , Sequence Analysis, DNA
13.
Bioinformatics ; 34(7): 1235-1237, 2018 04 01.
Article En | MEDLINE | ID: mdl-29194469

Summary: bioBakery is a meta'omic analysis environment and collection of individual software tools with the capacity to process raw shotgun sequencing data into actionable microbial community feature profiles, summary reports, and publication-ready figures. It includes a collection of pre-configured analysis modules also joined into workflows for reproducibility. Availability and implementation: bioBakery (http://huttenhower.sph.harvard.edu/biobakery) is publicly available for local installation as individual modules and as a virtual machine image. Each individual module has been developed to perform a particular task (e.g. quantitative taxonomic profiling or statistical analysis), and they are provided with source code, tutorials, demonstration data, and validation results; the bioBakery virtual image includes the entire suite of modules and their dependencies pre-installed. Images are available for both Amazon EC2 and Google Compute Engine. All software is open source under the MIT license. bioBakery is actively maintained with a support group at biobakery-users@googlegroups.com and new tools being added upon their release. Contact: chuttenh@hsph.harvard.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Metagenomics/methods , Microbiota/genetics , Software , Reproducibility of Results , Workflow
14.
Genome Biol ; 18(1): 228, 2017 11 30.
Article En | MEDLINE | ID: mdl-29187204

Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.


Metabolomics , Metagenomics , Microbiota , Proteomics , Research Design , Animals , Computational Biology/methods , DNA Barcoding, Taxonomic , Gene Expression Profiling/methods , Humans , Metabolomics/methods , Metagenomics/methods , Proteomics/methods
15.
mSystems ; 2(4)2017.
Article En | MEDLINE | ID: mdl-28808691

Fluoridation of drinking water and dental products prevents dental caries primarily by inhibiting energy harvest in oral cariogenic bacteria (such as Streptococcus mutans and Streptococcus sanguinis), thus leading to their depletion. However, the extent to which oral and gut microbial communities are affected by host fluoride exposure has been underexplored. In this study, we modeled human fluoride exposures to municipal water and dental products by treating mice with low or high levels of fluoride over a 12-week period. We then used 16S rRNA gene amplicon and shotgun metagenomic sequencing to assess fluoride's effects on oral and gut microbiome composition and function. In both the low- and high-fluoride groups, several operational taxonomic units (OTUs) belonging to acidogenic bacterial genera (such as Parabacteroides, Bacteroides, and Bilophila) were depleted in the oral community. In addition, fluoride-associated changes in oral community composition resulted in depletion of gene families involved in central carbon metabolism and energy harvest (2-oxoglutarate ferredoxin oxidoreductase, succinate dehydrogenase, and the glyoxylate cycle). In contrast, fluoride treatment did not induce a significant shift in gut microbial community composition or function in our mouse model, possibly due to absorption in the upper gastrointestinal tract. Fluoride-associated perturbations thus appeared to have a selective effect on the composition of the oral but not gut microbial community in mice. Future studies will be necessary to understand possible implications of fluoride exposure for the human microbiome. IMPORTANCE Fluoride has been added to drinking water and dental products since the 1950s. The beneficial effects of fluoride on oral health are due to its ability to inhibit the growth of bacteria that cause dental caries. Despite widespread human consumption of fluoride, there have been only two studies of humans that considered the effect of fluoride on human-associated microbial communities, which are increasingly understood to play important roles in health and disease. Notably, neither of these studies included a true cross-sectional control lacking fluoride exposure, as study subjects continued baseline fluoride treatment in their daily dental hygiene routines. To our knowledge, this work (in mice) is the first controlled study to assess the independent effects of fluoride exposure on the oral and gut microbial communities. Investigating how fluoride interacts with host-associated microbial communities in this controlled setting represents an effort toward understanding how common environmental exposures may potentially influence health.

16.
mSystems ; 1(3)2016.
Article En | MEDLINE | ID: mdl-27822528

Public transit systems are ideal for studying the urban microbiome and interindividual community transfer. In this study, we used 16S amplicon and shotgun metagenomic sequencing to profile microbial communities on multiple transit surfaces across train lines and stations in the Boston metropolitan transit system. The greatest determinant of microbial community structure was the transit surface type. In contrast, little variation was observed between geographically distinct train lines and stations serving different demographics. All surfaces were dominated by human skin and oral commensals such as Propionibacterium, Corynebacterium, Staphylococcus, and Streptococcus. The detected taxa not associated with humans included generalists from alphaproteobacteria, which were especially abundant on outdoor touchscreens. Shotgun metagenomics further identified viral and eukaryotic microbes, including Propionibacterium phage and Malassezia globosa. Functional profiling showed that Propionibacterium acnes pathways such as propionate production and porphyrin synthesis were enriched on train holding surfaces (holds), while electron transport chain components for aerobic respiration were enriched on touchscreens and seats. Lastly, the transit environment was not found to be a reservoir of antimicrobial resistance and virulence genes. Our results suggest that microbial communities on transit surfaces are maintained from a metapopulation of human skin commensals and environmental generalists, with enrichments corresponding to local interactions with the human body and environmental exposures. IMPORTANCE Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we profiled the Boston subway system, which provides 238 million trips per year overseen by the Massachusetts Bay Transportation Authority (MBTA). This yielded the first high-precision microbial survey of a variety of surfaces, ridership environments, and microbiological functions (including tests for potential pathogenicity) in a mass transit environment. Characterizing microbial profiles for multiple transit systems will become increasingly important for biosurveillance of antibiotic resistance genes or pathogens, which can be early indicators for outbreak or sanitation events. Understanding how human contact, materials, and the environment affect microbial profiles may eventually allow us to rationally design public spaces to sustain our health in the presence of microbial reservoirs. Author Video: An author video summary of this article is available.

17.
Appl Environ Microbiol ; 82(12): 3572-81, 2016 06 15.
Article En | MEDLINE | ID: mdl-27060125

UNLABELLED: Chthonomonas calidirosea T49(T) is a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that the C. calidirosea genome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of four C. calidirosea isolates obtained from four separate geothermal fields in the Taupo Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation in C. calidirosea relative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of the C. calidirosea isolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms of C. calidirosea distribution. This dispersal and extinction mechanism is likely not limited to C. calidirosea but may shape the populations and genomes of many other low-abundance free-living taxa. IMPORTANCE: This study compares the genomic sequence variations and metabolisms of four strains of Chthonomonas calidirosea, a rare thermophilic bacterium from the phylum Armatimonadetes It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the four C. calidirosea strains were isolated. C. calidirosea was previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, the C. calidirosea genome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting that C. calidirosea genotypes are not primarily determined by adaptive evolution. Instead, the presence of C. calidirosea may be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa.


Bacteria/classification , Bacteria/genetics , Genetic Variation , Genome, Bacterial , Phylogeography , Biota , Cluster Analysis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , New Zealand , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
18.
Genome Med ; 8(1): 17, 2016 Feb 17.
Article En | MEDLINE | ID: mdl-26884067

BACKGROUND: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression. METHODS: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background. RESULTS: We found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities. CONCLUSIONS: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions.


Diabetes Mellitus, Type 2/microbiology , Dysbiosis/microbiology , Gastrointestinal Microbiome , Obesity/microbiology , Verrucomicrobia/classification , Verrucomicrobia/isolation & purification , Adult , Feces/microbiology , Female , Healthy Volunteers , Humans , Male , Middle Aged , Phylogeny , Risk Factors , Twins, Monozygotic , Verrucomicrobia/genetics
19.
Stand Genomic Sci ; 10: 101, 2015.
Article En | MEDLINE | ID: mdl-26568784

Strain K22(T) is the type species of the recently- described genus Pyrinomonas, in subdivision 4 of the phylum Acidobacteria (Int J Syst Evol Micr. 2014; 64(1):220-7). It was isolated from geothermally-heated soil from Mt. Ngauruhoe, New Zealand, using low-nutrient medium. P. methylaliphatogenes K22(T) has a chemoheterotrophic metabolism; it can hydrolyze a limited range of simple carbohydrates and polypeptides. Its cell membrane is dominated by iso-branching fatty acids, and up to 40 % of its lipid content is membrane-spanning and ether lipids. It is obligately aerobic, thermophilic, moderately acidophilic, and non-spore-forming. The 3,788,560 bp genome of P. methylaliphatogenes K22(T) has a G + C content of 59.36 % and contains 3,189 protein-encoding and 55 non-coding RNA genes. Genomic analysis was consistent with nutritional requirements; in particular, the identified transporter classes reflect the oligotrophic nature of this strain.

20.
Int J Syst Evol Microbiol ; 65(12): 4479-4487, 2015 Dec.
Article En | MEDLINE | ID: mdl-26374291

An aerobic, thermophilic and cellulolytic bacterium, designated strain WKT50.2T, was isolated from geothermal soil at Waikite, New Zealand. Strain WKT50.2T grew at 53-76 °C and at pH 5.9-8.2. The DNA G+C content was 58.4 mol%. The major fatty acids were 12-methyl C18 : 0 and C18 : 0. Polar lipids were all linked to long-chain 1,2-diols, and comprised 2-acylalkyldiol-1-O-phosphoinositol (diolPI), 2-acylalkyldiol-1-O-phosphoacylmannoside (diolP-acylMan), 2-acylalkyldiol-1-O-phosphoinositol acylmannoside (diolPI-acylMan) and 2-acylalkyldiol-1-O-phosphoinositol mannoside (diolPI-Man). Strain WKT50.2T utilized a range of cellulosic substrates, alcohols and organic acids for growth, but was unable to utilize monosaccharides. Robust growth of WKT50.2T was observed on protein derivatives. WKT50.2T was sensitive to ampicillin, chloramphenicol, kanamycin, neomycin, polymyxin B, streptomycin and vancomycin. Metronidazole, lasalocid A and trimethoprim stimulated growth. Phylogenetic analysis of 16S rRNA gene sequences showed that WKT50.2T belonged to the class Thermomicrobia within the phylum Chloroflexi, and was most closely related to Thermorudis peleae KI4T (99.6% similarity). DNA-DNA hybridization between WKT50.2T and Thermorudis peleae DSM 27169T was 18.0%. Physiological and biochemical tests confirmed the phenotypic and genotypic differentiation of strain WKT50.2T from Thermorudis peleae KI4T and other members of the Thermomicrobia. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain WKT50.2T represents a novel species, for which the name Thermorudis pharmacophila sp. nov. is proposed, with the type strain WKT50.2T ( = DSM 26011T = ICMP 20042T). Emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus are also proposed, and include the description of a novel respiratory quinone, MK-8 2,3-epoxide (23%), in Thermomicrobium roseum.


Chloroflexi/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Chloroflexi/genetics , Chloroflexi/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Hot Springs , Hot Temperature , Molecular Sequence Data , New Zealand , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
...