Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36140390

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has had a significant impact on public health and the global economy. Several diagnostic tools are available for the detection of infectious diseases, with reverse transcription-polymerase chain reaction (RT-PCR) testing specifically recommended for viral RNA detection. However, this diagnostic method is costly, complex, and time-consuming. Although it does not have sufficient sensitivity, antigen detection by an immunoassay is an inexpensive and simpler alternative to RT-PCR. Here, we developed an ultrahigh sensitivity digital immunoassay (d-IA) for detecting SARS-CoV-2 nucleocapsid (N) protein as antigens using a fully automated desktop analyzer based on a digital enzyme-linked immunosorbent assay. METHODS: We developed a fully automated d-IA desktop analyzer and measured the viral N protein as an antigen in nasopharyngeal (NP) swabs from patients with coronavirus disease. We studied nasopharyngeal swabs of 159 and 88 patients who were RT-PCR-negative and RT-PCR-positive, respectively. RESULTS: The limit of detection of SARS-CoV-2 d-IA was 0.0043 pg/mL of N protein. The cutoff value was 0.029 pg/mL, with a negative RT-PCR distribution. The sensitivity of RT-PCR-positive specimens was estimated to be 94.3% (83/88). The assay time was 28 min. CONCLUSIONS: Our d-IA system, which includes a novel fully automated desktop analyzer, enabled detection of the SARS-CoV-2 N-protein with a comparable sensitivity to RT-PCR within 30 min. Thus, d-IA shows potential for SARS-CoV-2 detection across multiple diagnostic centers including small clinics, hospitals, airport quarantines, and clinical laboratories.

2.
Biophys Physicobiol ; 18: 145-158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178565

RESUMEN

The green fluorescent protein (GFP) derived from Pacific Ocean jellyfish is an essential tool in biology. GFP-solvent interactions can modulate the fluorescent property of GFP. We previously reported that glycine insertion is an effective mutation in the yellow variant of GFP, yellow fluorescent protein (YFP). Glycine insertion into one of the ß-strands comprising the barrel structure distorts its structure, allowing water molecules to invade near the chromophore, enhancing hydrostatic pressure or solution hydrophobicity sensitivity. However, the underlying mechanism of how glycine insertion imparts environmental sensitivity to YFP has not been elucidated yet. To unveil the relationship between fluorescence and ß-strand distortion, we investigated the effects of glycine insertion on the dependence of the optical properties of GFP variants named enhanced-GFP (eGFP) and its yellow (eYFP) and cyan (eCFP) variants with respect to pH, temperature, pressure, and hydrophobicity. Our results showed that the quantum yield decreased depending on the number of inserted glycines in all variants, and the dependence on pH, temperature, pressure, and hydrophobicity was altered, indicating the invasion of water molecules into the ß-barrel. Peak shifts in the emission spectrum were observed in glycine-inserted eGFP, suggesting a change of the electric state in the excited chromophore. A comparative investigation of the spectral shift among variants under different conditions demonstrated that glycine insertion rearranged the hydrogen bond network between His148 and the chromophore. The present results provide important insights for further understanding the fluorescence mechanism in GFPs and suggest that glycine insertion could be a potent approach for investigating the relationship between water molecules and the intra-protein chromophore.

3.
Anal Bioanal Chem ; 411(17): 3789-3800, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31161320

RESUMEN

MicroRNAs (miRNAs) in a blood sample are usually measured by quantitative reverse transcription PCR (qRT-PCR), microarray, and next-generation sequencing (NGS) which requires time-consuming pre-treatment, manual operation, and a stand-alone instrument. To overcome these disadvantages, miRNA testing has been developed using the automated analyzers routinely used in clinical laboratories. An isothermal DNA amplification reaction was adapted to a fully automated immunoassay analyzer that conducts extraction, amplification, and detection processes at 37 °C in 44 min. In a reaction vessel, a pre-designed single-stranded signal DNA was amplified in the presence of miRNA, using DNA templates, DNA polymerase, and nicking endonuclease. Then, the amplified signal DNA was hybridized by one DNA probe attached to a magnetic particle and another DNA probe labeled with acridinium ester. After the chemiluminescence reaction, luminescence intensity was automatically measured. The automated assays of cancer-related miRNAs were implemented on the analyzer with throughput of 66 tests per hour. In the assays with one-step amplification, three miRNAs (miR-21-5p, miR-18a-5p, and miR-500a-3p) at concentrations lower than 100 fM were automatically detected and the cross reactivity for miR-21-5p with fifteen similar miRNAs was not higher than 0.02%. In the assay with two-step amplification, detection sensitivity and amplification rate for miR-21-5p were 3 fM and 103-fold, respectively. The coefficient of variations (CVs) in the measurement at the target concentrations from 5 fM to 1000 pM were less than 8%. Furthermore, we also achieved automated nucleic acid detection in human serum. The proposed fully automated miRNA assays showed high sensitivity, low cross reactivity, and reproducibility suitable for clinical use. Graphical abstract.


Asunto(s)
Inmunoensayo/métodos , MicroARNs/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Automatización , Humanos , Luminiscencia
4.
Biophys Physicobiol ; 14: 119-125, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900589

RESUMEN

We evaluated usability of a previously developed genetically encoded molecular crowding sensor in various biological phenomena. Molecular crowding refers to intracellular regions that are occupied more by proteins and nucleotides than by water molecules and is thought to have a strong effect on protein function. To evaluate intracellular molecular crowding, usually the diffusion coefficient of a probe is used because it is related to mobility of the surrounding molecular crowding agents. Recently, genetically encoded molecular crowding sensors based on Förster resonance energy transfer were reported. In the present study, to evaluate the usability of a genetically encoded molecular crowding sensor, molecular crowding was monitored during several biological events. Changes in molecular crowding during stem cell differentiation, cell division, and focal adhesion development and difference in molecular crowding in filopodia locations were examined. The results show usefulness of the genetically encoded molecular crowding sensor for understanding the biological phenomena relating to molecular crowding.

5.
Sci Rep ; 6: 22342, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26956628

RESUMEN

Fluorescent proteins have been widely used in biology because of their compatibility and varied applications in living specimens. Fluorescent proteins are often undesirably sensitive to intracellular conditions such as pH and ion concentration, generating considerable issues at times. However, harnessing these intrinsic sensitivities can help develop functional probes. In this study, we found that the fluorescence of yellow fluorescent protein (YFP) depends on the protein concentration in the solution and that this dependence can be enhanced by adding a glycine residue in to the YFP; we applied this finding to construct an intracellular protein-crowding sensor. A Förster resonance energy transfer (FRET) pair, involving a cyan fluorescent protein (CFP) insensitive to protein concentration and a glycine-inserted YFP, works as a genetically encoded probe to evaluate intracellular crowding. By measuring the fluorescence of the present FRET probe, we were able to detect dynamic changes in protein crowding in living cells.


Asunto(s)
Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/análisis , Soluciones/química , Transferencia Resonante de Energía de Fluorescencia , Glicina/genética , Proteínas Luminiscentes/genética , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética
6.
PLoS One ; 8(8): e73212, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24014139

RESUMEN

Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the ß-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Glicina/metabolismo , Proteínas Luminiscentes/metabolismo , Mutación Missense , Proteínas Bacterianas/genética , Escherichia coli/genética , Glicina/genética , Presión Hidrostática , Proteínas Luminiscentes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA