Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Immunother Cancer ; 10(7)2022 07.
Article En | MEDLINE | ID: mdl-35798535

Macrophages are main players of the innate immune system. They show great heterogeneity and play diverse functions that include support to development, sustenance of tissue homeostasis and defense against infections. Dysfunctional macrophages have been described in multiple pathologies including cancer. Indeed tumor-associated macrophages (TAMs) are abundant in most tumors and sustain cancer growth, promote invasion and mediate immune evasion. Importantly, lipid metabolism influences macrophage activation and lipid accumulation confers pathogenic features on macrophages. Notably, a subset of lipid-loaded macrophages has been recently identified in many tumor types. Lipid-loaded TAMs support tumor growth and progression and exert immune-suppressive activities. In this review, we describe the role of lipid metabolism in macrophage activation in physiology and pathology and we discuss the impact of lipid accumulation in macrophages in the context of cancer.


Neoplasms , Tumor Microenvironment , Humans , Lipids , Macrophages
2.
J Exp Med ; 219(2)2022 02 07.
Article En | MEDLINE | ID: mdl-34919143

Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell-derived IL-1ß enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes.


Lipids , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Animals , Cell Plasticity/genetics , Cell Plasticity/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Knockdown Techniques , Heterografts , Humans , Lipid Metabolism , Lipids/chemistry , Male , Metabolic Networks and Pathways , Mice , Prostatic Neoplasms/pathology , Single-Cell Analysis
3.
Front Pediatr ; 8: 18, 2020.
Article En | MEDLINE | ID: mdl-32083045

Objectives: Approximately 10% of newborn infants require resuscitation at birth. Accurate heart rate (HR) assessment guides resuscitation interventions, thereby reducing morbidities and mortality. While existing HR assessment methods have several limitations, the Doppler ultrasound (Doppler-US) might be a promising alternative. We aimed to evaluate accuracy and optimal use of Doppler-US for HR assessments during neonatal asphyxia in a pre-clinical model. Design: HR assessments were performed in 16 term newborn piglets that were anesthetized, intubated, and instrumented. Study I evaluated optimal transducer position, Study II compared aortic (AV) and pulmonary (PV) examination modes, and Study III examined accuracy during asphyxia, for HR assessment. Setting: Experimental setting. Subjects: Asphyxia-induced piglets. Interventions: Study I: Doppler-US (USCOM® 1A) HR was assessed on upper (A), middle (B), and lower (C) third of the sternum; study II: Doppler-US HR was assessed using AV and PV examination modes; study III: HR was assessed during asphyxia. Comparisons were made between Doppler-US and the clinical gold standard for HR assessments, electrocardiography (ECG). Measurements and Main Results: Study I: Mean (SD) Doppler-US HR at position A, B, and C showed no difference when compared to ECG HR. Study II: The mean (SD) Doppler-US HR using AV and PV modes also showed no difference when compared to ECG HR. Study III: Bland-Altman analysis revealed a mean difference (95% limits of agreement) between Doppler-US and ECG HR of 1.5 (-16 to 19) bpm. Additionally, motion artifacts produced false peaks and peak size was seen to decrease as bradycardia progressed. Conclusions: HR assessment using Doppler-US during asphyxia is accurate but has limitations and must be further evaluated prior to clinical use. Doppler-US can be positioned along the sternum and use either AV or PV mode for accurate assessments in a piglet model of neonatal asphyxia.

4.
Front Pediatr ; 7: 453, 2019.
Article En | MEDLINE | ID: mdl-31750281

Objectives: Heart rate (HR) is the most significant parameter to assess a newborn's clinical status at birth. Recently, novel technologies including smartphone applications have been suggested for HR assessment during neonatal resuscitation. The aim of this study was to evaluate the accuracy, speed, and precision of the NeoTapLifeSupport (NeoTapLS) smartphone application using a digital stethoscope (DS) for HR assessment during neonatal resuscitation. Design: Newborn piglets (n = 20, 1-3 days, 1.7-2.4 kg) were anesthetized, intubated, mechanically ventilated, and subjected to 30 min of hypoxia, followed by asphyxia. Asphyxia was induced by clamping the endotracheal tube and disconnecting the ventilator, until asystole was confirmed by zero carotid blood flow (CBF). Setting: Experimental setting. Subjects: Asphyxia-induced newborn piglets. Interventions: During asphyxia, HR assessments were performed with a DS using the NeoTapLS smartphone application, and compared to 6-s method (6 s), and 10-s method (10 s). Measurements and Main Results: Accuracy of obtained HRs was compared to CBF and electrocardiogram and assessment time using NeoTapLS, 6 s, and 10 s were also measured. The mean(SD) HR with the NeoTapLS was 68(26), compared to CBF with 68(27) bpm, 6 s with 68(27), and 10 s with 66(26) bpm during asphyxia. Bland-Altman analysis revealed no difference between HR using the NeoTapLS, 6 s, 10 s, compared to CBF HR, with NeoTapLS showing the smallest difference between 95% limits of agreement. The median (IQR) time required to obtain a HR using the NeoTapLS was 3(2-4) s, compared to 6(6-7), and 10(10-11) s for 6 and 10 s, respectively. Conclusions: Our data suggests that the NeoTapLS is accurate, fast, and precise during neonatal asphyxia to assess heart rate.

5.
Dis Model Mech ; 12(10)2019 10 17.
Article En | MEDLINE | ID: mdl-31515241

Schimke immuno-osseous dysplasia is an autosomal recessive genetic osteochondrodysplasia characterized by dysmorphism, spondyloepiphyseal dysplasia, nephrotic syndrome and frequently T cell immunodeficiency. Several hypotheses have been proposed to explain the pathophysiology of the disease; however, the mechanism by which SMARCAL1 mutations cause the syndrome is elusive. Here, we generated a conditional SMARCAL1 knockdown model in induced pluripotent stem cells (iPSCs) to mimic conditions associated with the severe form the disease. Using multiple cellular endpoints, we characterized this model for the presence of phenotypes linked to the replication caretaker role of SMARCAL1. Our data show that conditional knockdown of SMARCAL1 in human iPSCs induces replication-dependent and chronic accumulation of DNA damage triggering the DNA damage response. Furthermore, they indicate that accumulation of DNA damage and activation of the DNA damage response correlates with increased levels of R-loops and replication-transcription interference. Finally, we provide evidence that SMARCAL1-deficient iPSCs maintain active DNA damage response beyond differentiation, possibly contributing to the observed altered expression of a subset of germ layer-specific master genes. Confirming the relevance of SMARCAL1 loss for the observed phenotypes, they are prevented or rescued after re-expression of wild-type SMARCAL1 in our iPSC model. In conclusion, our conditional SMARCAL1 knockdown model in iPSCs may represent a powerful model when studying pathogenetic mechanisms of severe Schimke immuno-osseous dysplasia.


Cell Differentiation/genetics , DNA Helicases/metabolism , DNA Replication/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Induced Pluripotent Stem Cells/metabolism , Stress, Physiological/genetics , Cell Lineage , DNA Damage/genetics , DNA Repair/genetics , Humans , Phosphorylation , S Phase , Transcription, Genetic
...