Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 351: 141131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38190942

RESUMEN

The environmental degradation of microplastics results in ultrafine particles that may incur severe biological concerns. Despite this, the atmospheric existence of plastics of less than a few microns has barely been investigated due to the particle size limit of conventional analytical methods. This study develops a procedure to quantify and characterize plastic particles (including nanoplastics; less than 1 µm) in the air through fractional sampling, a simple pretreatment method, and pyrolysis-gas chromatography-mass spectrometry (pyr-GC/MS). We targeted 11 major polymers, namely, polyethylene, polypropylene, polystyrene, acrylonitrile-butadiene-styrene resin, styrene-butadiene rubber, polymethylmethacrylate, polycarbonate, polyvinyl chloride, polyethylene terephthalate (PET), polyamide 6, and polyamide 66 (PA66). The average spike and recovery rate of each polymer in the aerosol collected on the roof of a four-story building near a major road in Kyoto, Japan, amounted to 78-130%, with a coefficient of variation of less than 15%. By coupling pyr-GC/MS analysis with fractional sampling of particles within the size range of >11 µm, 11-7.0 µm, 7.0-4.7 µm, 4.7-3.3 µm, 3.3-2.1 µm, 2.1-1.1 µm, 1.1-0.65 µm, 0.65-0.43 µm, it was possible to quantify airborne nano- and microplastics by particle size. Polyethylene, polystyrene, PET, and PA66 were detected in the air, and the total mass concentration of tiny plastic particles (0.43-11 µm) amounted to 1.20 µg/m3. This translates into total particle numbers of 3.05 × 106 particles/m3 (assuming spheres), revealing a substantial number of particles under 1 µm. These results will contribute to future studies to understand the atmospheric behaviors of ultrafine plastic particles and their flow-on effects on the respiratory system.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Microplásticos/análisis , Poliestirenos/análisis , Contaminantes Químicos del Agua/análisis , Polietilenos , Monitoreo del Ambiente/métodos
2.
Environ Pollut ; 334: 122198, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37453688

RESUMEN

The impact of microplastics (MPs, plastic particles ≤5 mm) on ecosystems is of great concern. Road surfaces represent a significant source of MPs where plastic fragments are physically and chemically reduced to MPs. However, the literature lacks information on fragmentation tendencies below 11 µm. This study aimed to characterize the occurrence of MPs in road dust in different size fractions down to 1.1 µm. Road dust was collected at five sites near a major road in Kusatsu city, Japan, and partitioned by size into 13 fractions (1.1-850 µm). The coarser fractions accounted for a greater proportion of the dust. The percentage of organic matter, determined by loss on ignition, increased as the fractions became finer. Pyrolysis-gas chromatography-mass spectrometry was used to quantify 12 types of polymers in each fraction. The dust was found to contain nine types of MP, namely, polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), styrene/butadiene rubber (SBR), acrylonitrile/butadiene/styrene resin (ABS), polycarbonate (PC), polymethylmethacrylate (PMMA), and polyamide 66 (PA66). The total MP concentration in road dust particles by particle size fraction (concentrationf) began to increase from the 125-250 µm fraction and remained elevated in finer fractions down to 1.1 µm, indicating that MPs in the road dust micronized to at least 1.1 µm. However, for individual polymer types, the tendency for concentrationf to increase or decrease with particle size fraction varied: the concentrationf of some polymers, such as PE and PVC, remained elevated in fractions down to 1.1 µm; the concentrationf of SBR, a rubber-MP, showed a stable or decreasing trend in fractions of 7.0-11 µm and finer. Particles of PE, PVC, and some other plastics might become increasingly finer, even down to 1.1 µm. Further research is needed to understand the comminution limits of these polymers under pertinent environmental conditions.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Microplásticos , Goma , Butadienos/análisis , Polvo/análisis , Japón , Tamaño de la Partícula , Ecosistema , Polímeros , Polietilenos/análisis , Estirenos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA