Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
ACS Biomater Sci Eng ; 10(4): 2442-2450, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38530812

With the progression of regenerative medicine and cell therapy, the importance of cryopreservation techniques for cultured cells continues to rise. Traditional cryoprotectants, such as dimethyl sulfoxide and glycerol, are effective in cryopreserving suspended cells, but they do not demonstrate sufficient efficacy for two-dimensional (2D)-cultured cells. In the past decade, small molecules and polymers have been studied as cryoprotectants. Some L-amino acids have been reported to be natural and biocompatible cryoprotectants. However, the cryoprotective effects of D-amino acids have not been investigated for such organized cells. In the present study, the cryoprotective effects of D- and L-amino acids and previously reported cryoprotectants were assessed using HepG2 cells cultured on a microplate without suspending the cells. d-Proline had the highest cryoprotective effect on 2D-cultured cells. The composition of the cell-freezing solution and freezing conditions were then optimized. The d-proline-containing cell-freezing solution also effectively worked for other cell lines. To minimize the amount of animal-derived components, fetal bovine serum in the cell freezing solution was substituted with bovine serum albumin and StemFit (a commercial supplement for stem cell induction). Further investigations on the mechanism of cryopreservation suggested that d-proline protected enzymes essential for cell survival from freeze-induced damage. In conclusion, an effective and xeno-free cell-freezing solution was produced using d-proline combined with dimethyl sulfoxide and StemFit for 2D-cultured cells.


Cryoprotective Agents , Dimethyl Sulfoxide , Animals , Humans , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Dimethyl Sulfoxide/pharmacology , Amino Acids/pharmacology , Cryopreservation/methods , Cell Line , Proline/pharmacology , Amines
2.
Small ; 19(14): e2207318, 2023 Apr.
Article En | MEDLINE | ID: mdl-36693778

Inorganic nanoparticles with multiple functions have been attracting attention as multimodal nanoprobes in bioimaging, biomolecule detection, and medical diagnosis and treatment. A drawback of conventional metallic nanoparticle-based nanoprobes is the Ohmic losses that lead to fluorescence quenching of attached molecules and local heating under light irradiation. Here, metal-free nanoprobes capable of scattering/fluorescence dual-mode imaging are developed. The nanoprobes are composed of a silicon nanosphere core having efficient Mie scattering in the visible to near infrared range and a fluorophore doped silica shell. The dark-field scattering and photoluminescence images/spectra for nanoprobes made from different size silicon nanospheres and different kinds of fluorophores are studied by single particle spectroscopy. The fluorescence spectra are strongly modified by the Mie modes of a silicon nanosphere core. By comparing scattering and fluorescence spectra and calculated Purcell factors, the fluorescence enhancement factor is quantitatively discussed. In vitro scattering/fluorescence imaging studies on human cancer cells demonstrate that the developed nanoparticles work as scattering/fluorescence dual-mode imaging nanoprobes.

3.
JACS Au ; 2(9): 2023-2028, 2022 Sep 26.
Article En | MEDLINE | ID: mdl-36186562

Cell-selective killing using molecular self-assemblies is an emerging concept for cancer therapy. Reported molecular self-assemblies are triggered by hydrolysis of well-designed molecules inside or outside cancer cells. This hydrolysis can occur in cancer and normal cells because of the abundance of water in living systems. Here, we report the in situ synthesis of a self-assembling molecule using a tyrosine kinase overexpressed in cancer cells. We designed a tyrosine-containing peptide amphiphile (C16-E4Y) that is transformed into a phosphorylated peptide amphiphile (C16-E4pY) by the overexpressed tyrosine kinase. Phosphorylation of C16-E4Y promoted self-assembly to form nanofibers in cancer cells. C16-E4Y exhibited selective cytotoxicity toward cancer cells overexpressing the tyrosine kinase. Self-assembled C16-E4pY induced endoplasmic reticulum stress that caused apoptotic cell death. Animal experiments revealed that C16-E4Y has antitumor activity. These results show that an enzyme overexpressed in cancer cells is available for intracellular synthesis of an antitumor self-assembling drug that is cell-selective.

4.
J Phys Chem B ; 126(31): 5793-5802, 2022 08 11.
Article En | MEDLINE | ID: mdl-35913127

We investigated d-amino acids as potential inhibitors targeting l-peptide toxins. Among the l- and d-amino acids tested, we found that d-tryptophan (d-Trp) acted as an inhibitor of melittin-induced hemolysis. We then evaluated various Trp derivatives and found that 5-chlorotryptamine (5CT) had the largest inhibitory effect on melittin. The indole ring, amino group, and steric hindrance of an inhibitor played important roles in the inhibition of melittin activity. Despite the small size and simple molecular structure of 5CT, its IC50 was approximately 13 µg/mL. Fluorescence quenching, circular dichroism measurements, and size-exclusion chromatography revealed that 5CT interacted with Trp19 in melittin and affected the formation of the melittin tetramer involved in hemolysis. Molecular dynamics simulation of melittin also indicated that the interaction of 5CT with Trp19 in melittin affected the formation of the tetramer.


Hemolysis , Melitten , Circular Dichroism , Humans , Indoles , Melitten/chemistry , Melitten/pharmacology , Tryptophan/chemistry
5.
J Exp Clin Cancer Res ; 41(1): 146, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35428310

BACKGROUND: Despite recent advances in radiotherapy, radioresistance in patients with pancreatic cancer remains a crucial dilemma for clinical treatment. Cancer stem cells (CSCs) represent a major factor in radioresistance. Developing a potent radiosensitizer may be a novel candidate for the eradication of pancreatic CSCs. METHODS: CSCs were isolated from MIA PaCa-2 and PANC1 human pancreatic cancer cell lines. Titanium peroxide nanoparticles (TiOxNPs) were synthesized from titanium dioxide nanoparticles (TiO2NPs) and utilized as radiosensitizers when added one hour prior to radiation exposure. The antitumor activity of this novel therapeutic strategy was evaluated against well-established pancreatic CSCs model both in vitro and in vivo. RESULTS: It is shown that TiOxNPs combined with ionizing radiation exhibit anti-cancer effects on radioresistant CSCs both in vitro and in vivo. TiOxNPs exhibited a synergistic effect with radiation on pancreatic CSC-enriched spheres by downregulating self-renewal regulatory factors and CSC surface markers. Moreover, combined treatment suppressed epithelial-mesenchymal transition, migration, and invasion properties in primary and aggressive pancreatic cancer cells by reducing the expression of proteins relevant to these processes. Notably, radiosensitizing TiOxNPs suppressed the growth of pancreatic xenografts following primary or dissociating sphere MIA PaCa-2 cell implantation. It is inferred that synergy is formed by generating intolerable levels of reactive oxygen species (ROS) and inactivating the AKT signaling pathway. CONCLUSIONS: Our data suggested the use of TiOxNPs in combination with radiation may be considered an attractive therapeutic strategy to eliminate pancreatic CSCs.


Nanoparticles , Pancreatic Neoplasms , Radiation-Sensitizing Agents , Cell Line, Tumor , Humans , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/radiotherapy , Peroxides/metabolism , Radiation-Sensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Titanium/metabolism , Titanium/pharmacology , Pancreatic Neoplasms
6.
ACS Appl Mater Interfaces ; 14(2): 3255-3263, 2022 Jan 19.
Article En | MEDLINE | ID: mdl-34923822

Fluorous chemistry has unique features and high potential applicability, which are distinct from those of nonfluorinated organic compounds. However, there are limited reports detailing the applications of fluorous-fluorous interactions (fluorophilicity or fluorous affinity), likely because these interactions are not found in nature. In the present study, we describe the rewritable surface functionalization of a plastic substrate based on fluorous affinity. Plastic substrates were dip-coated with a series of methacrylate-based fluoropolymers to generate fluorous surfaces. Fluorous-tagged small molecules [perfluoroalkyl (Rf) amines] were immobilized on the fluorous surfaces via fluorous-fluorous interactions, thereby introducing reactive functional groups (amino moieties) on the surface. The amino groups displayed on the surface (accessible by a reactant) were successfully quantified using a reactive fluorophore, which enabled quantitative analysis of the Rf-amines immobilized on the fluorous surface that were available for the subsequent reaction. The effects of the molecular structures of the fluoropolymers and Rf-amines on the surface immobilization of Rf-amines were also investigated quantitatively. The surface coated with a fluoropolymer containing -C8F17 most effectively immobilized an Rf-amine comprising two -C6F13 chains. The adhered Rf-amines were easily removed by washing the surface with methanol, and then, they could successfully be re-immobilized on the surface. Finally, the presented approach enabled the rewritable micropatterning of an Rf-tagged biomolecule on a plastic surface through microcontact printing.

7.
Phys Imaging Radiat Oncol ; 20: 94-97, 2021 Oct.
Article En | MEDLINE | ID: mdl-34869923

Metal-based nanoparticles (NPs) have been extensively studied for dose enhancement applications in radiation therapy. This study investigated the utility of such NPs for image-guided radiation therapy (IGRT). Phantom images of gold NPs (AuNPs) and titanium peroxide NPs (TiOxNPs) with different concentrations were acquired using IGRT modalities, including cone-beam computed tomography (CBCT). AuNPs induced strong contrast enhancement in kV energy CBCT images, whereas TiOxNPs at high concentrations showed weak but detectable changes. The results indicated that these NPs can be used to enhance IGRT images as well as dose enhancement for treatment purposes.

8.
Biomacromolecules ; 22(6): 2524-2531, 2021 06 14.
Article En | MEDLINE | ID: mdl-33960189

Self-assembly of synthetic molecules has been drawing broad attention as a novel emerging approach in drug discovery. Here, we report selective cell death induced by a novel peptide amphiphile that self-assembles to form entangled nanofibers (hydrogel) based on intracellular pH (pHi). We found that a palmitoylated hexapeptide (C16-VVAEEE) formed a hydrogel below pH 7. The formation of the nanofibrous self-assembly was responsive to a small pH change around pH 7. The cytotoxicity of C16-VVAEEE was correlated with pHi of cells. Microscope observation demonstrated the self-assembly of C16-VVAEEE inside HEK293 cells. In vivo experiments revealed that the transcutaneous administration of C16-VVAEEE showed remarkable anti-tumor activity. This study proposes that distinct microenvironment inside living cells can be used as a trigger for the intracellular self-assembly of a peptide amphiphile, which provide a new clue to drug discovery.


Nanofibers , Neoplasms , Cell Death , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Peptides/pharmacology , Tumor Microenvironment
9.
RSC Adv ; 11(38): 23409-23417, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-35479813

We propose a novel approach to stably immobilize gold nanoparticles (AuNPs) on a plastic substrate and demonstrate that the modified substrate is also capable of immobilizing biomolecules. To immobilize citrate-capped AuNPs, an acrylic substrate was simply dip-coated in a functional polymer solution to decorate the outermost surface with amino groups. Electrostatic interactions between AuNPs and the amino groups immobilized the AuNPs with a high density. The AuNP-modified acrylic substrate was transparent with a red tint. A heat treatment promoted the formation of amide bonds between carboxy groups on the AuNPs and amino groups on the substrate surface. These covalent bonds stabilized the immobilized AuNPs and the resulting substrate was resistant to washing with acid and thiol-containing solutions. The surface density of AuNPs was controlled by the surface density of amino groups on the substrate surface, which was in turn controlled by the dip-coating in the functional polymer solution. We attempted to immobilize functional biomolecules on the AuNPs-functionalized plastic surface by two different approaches. An enzyme (horseradish peroxidase) was successfully immobilized on the AuNPs through amide formation and 5'-thiolated DNA was also immobilized on the AuNPs through S-Au interactions. These chemistries allow for simultaneous immobilization of two different kinds of biomolecules on a plastic substrate without loss of their functional properties.

10.
Colloids Surf B Biointerfaces ; 198: 111451, 2021 Feb.
Article En | MEDLINE | ID: mdl-33223346

Polyacrylic acid-modified titanium peroxide nanoparticles (PAA-TiOx NPs) are promising radiosensitizers that enhance the therapeutic effect of X-ray irradiation after local injection into tumors. However, the mechanism for this reaction has remained unclear with the exception of the involvement of hydrogen peroxide (H2O2), which is released by PAA-TiOx NPs to a liquid phase during dispersion. In the present study, a clonogenic assay was used to compare PAA-TiOx NPs with free H2O2 molecules to investigate the effect exerted on the radiosensitivity of cancer cells in vitro. A cell-free dialysis method revealed that a portion of the H2O2 adsorbed onto the PAA-TiOx NPs during synthesis could be released during a treatment regimen. The H2O2 release lasted for 7 h, which was sufficient for one radiation treatment procedure. For in vitro experiments, cultured human pancreatic cancer cells took up PAA-TiOx NPs in 10 min after administration. Interestingly, when the cells were washed with a buffer after treatment with either a PAA-TiOx NP or H2O2 solution, the intracellular H2O2 levels remained higher with PAA-TiOx NP treatment compared with the H2O2 solution treatment. Furthermore, the effects of subsequent X-ray irradiation corresponded to the intracellular H2O2 levels. These results indicate that PAA-TiOx NPs are efficient carriers of H2O2 into cancer cells and thus enhance the radiosensitivity.


Nanoparticles , Neoplasms , Radiation-Sensitizing Agents , Humans , Hydrogen Peroxide , Titanium
11.
Biotechnol Bioeng ; 118(2): 863-876, 2021 02.
Article En | MEDLINE | ID: mdl-33095446

Melatonin is an indoleamine neurohormone made by the pineal gland. Its receptors, MTNR1A and MTNR1B, are members of the G-protein-coupled receptor (GPCR) family and are involved in sleep, circadian rhythm, and mood disorders, and in the inhibition of cancer growth. These receptors, therefore, represent significant molecular targets for insomnia, circadian sleep disorders, and cancer. The yeast Saccharomyces cerevisiae is an attractive host for assaying agonistic activity for human GPCR. We previously constructed a GPCR-based biosensor employing a high-sensitivity yeast strain that incorporated both a chimeric yeast-human Gα protein and a bright fluorescent reporter gene (ZsGreen). Similar approaches have been used for simple and convenient measurements of various GPCR activities. In the current study, we constructed a fluorescence-based yeast biosensor for monitoring the signaling activation of human melatonin receptors. We used this system to analyze point mutations, including previously unreported mutations of the consensus sequences of MTNR1A and MTNR1B melatonin receptors and compared their effects. Most mutations in the consensus sequences significantly affected the signaling capacities of both receptors, but several mutations showed differences between these subtype receptors. Thus, this yeast biosensor holds promise for revealing the functions of melatonin receptors.


Biosensing Techniques , Mutagenesis, Site-Directed , Receptor, Melatonin, MT1 , Receptor, Melatonin, MT2 , Saccharomyces cerevisiae , Humans , Microscopy, Fluorescence , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
12.
Chem Pharm Bull (Tokyo) ; 68(11): 1100-1103, 2020.
Article En | MEDLINE | ID: mdl-33132377

α,ß-Unsaturated esters were selectively protected in situ in the presence of α,ß-unsaturated Weinreb amides using PEt3 and trimethylsilyl trifluoromethanesulfonate (TMSOTf) in toluene under reflux. Diisobutylaluminium hydride (DIBAL-H) reduction of the mixture followed by tetra-n-butylammonium fluoride (TBAF) treatment produced α,ß-unsaturated aldehydes in good yields along with the recovered α,ß-unsaturated esters.


Amides/chemistry , Esters/chemistry , Aldehydes/chemistry , Mesylates/chemistry , Oxidation-Reduction , Trimethylsilyl Compounds/chemistry
13.
Nanomaterials (Basel) ; 10(6)2020 Jun 07.
Article En | MEDLINE | ID: mdl-32517328

The development of potentially safe radiosensitizing agents is essential to enhance the treatment outcomes of radioresistant cancers. The titanium peroxide nanoparticle (TiOxNP) was originally produced using the titanium dioxide nanoparticle, and it showed excellent reactive oxygen species (ROS) generation in response to ionizing radiation. Surface coating the TiOxNPs with polyacrylic acid (PAA) showed low toxicity to the living body and excellent radiosensitizing effect on cancer cells. Herein, we evaluated the mechanism of radiosensitization by PAA-TiOxNPs in comparison with gold nanoparticles (AuNPs) which represent high-atomic-number nanoparticles that show a radiosensitizing effect through the emission of secondary electrons. The anticancer effects of both nanoparticles were compared by induction of apoptosis, colony-forming assay, and the inhibition of tumor growth. PAA-TiOxNPs showed a significantly more radiosensitizing effect than that of AuNPs. A comparison of the types and amounts of ROS generated showed that hydrogen peroxide generation by PAA-TiOxNPs was the major factor that contributed to the nanoparticle radiosensitization. Importantly, PAA-TiOxNPs were generally nontoxic to healthy mice and caused no histological abnormalities in the liver, kidney, lung, and heart tissues.

14.
Phys Med ; 75: 69-76, 2020 Jun 12.
Article En | MEDLINE | ID: mdl-32540648

PURPOSE: Titanium dioxide nanoparticles (TiO2 NPs) have been investigated for their role as radiosensitisers for radiation therapy. The study aims to increase the efficiency of these NPs by synthesising them with samarium. METHODS: Samarium-doped TiO2 NPs (Ti(Sm)O2 NPs) were synthesised using a solvothermal method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS) were performed for characterising of the Ti(Sm)O2 NPs. The intracellular uptake and cytotoxicity were assessed in vitro using A549 and DU145 cancer cell lines. Furthermore, the effect of dose enhancement and generation of reactive oxygen species (ROS) in response to 6 MV X-rays was evaluated. Additionally, the image contrast properties were investigated using computed tomography (CT) images. RESULTS: The synthesised Ti(Sm)O2 NPs were about 13 nm in diameter as determined by TEM. The XRD pattern of Ti(Sm)O2 NPs was consistent with that of anatase-type TiO2. EDS confirmed the presence of samarium in the nanoparticles. At 200 µg/ml concentration, no differences in cellular uptake and cytotoxicity were observed between TiO2 NPs and Ti(Sm)O2 NPs in both A549 and DU145 cells. However, the combination of Ti(Sm)O2 NPs and X-rays elicited higher cytotoxic effect and ROS generation in the cells than that with TiO2 NPs and X-rays. The CT numbers of Ti(Sm)O2 NPs were systematically higher than that of TiO2 NPs. CONCLUSIONS: The Ti(Sm)O2 NPs increased the dose enhancement of MV X-ray beams than that elicited by TiO2 NPs. Samarium improved the efficiency of TiO2 NPs as potential radiosensitising agent.

15.
ACS Appl Bio Mater ; 3(11): 7743-7751, 2020 Nov 16.
Article En | MEDLINE | ID: mdl-35019514

Radiosensitizing therapy for cancer treatment that enhances the effect of existing radiation therapy and enables noninvasive therapy has attracted attention. In this study, to achieve target cell-specific noninvasive cancer treatment using a ZHER2-bionanocapsule/liposome (BNC/LP), a carrier that binds to human epidermal growth factor receptor 2 (HER2), we evaluated the delivery of anticancer drugs and radiosensitizers and treatment effects in vitro and in vivo in mice. Target cell-specific cytotoxic activity and antitumor effects were confirmed following delivery of doxorubicin-encapsulated particles. In addition, cell damage due to radiosensitizing effects was confirmed in combination with X-ray irradiation following delivery of particles containing polyacrylic acid-modified titanium peroxide nanoparticles as a radiosensitizer. Furthermore, even when the particles were injected via the tail vein of mice, they accumulated in the tumor and exhibited an antitumor effect because of radiosensitization. Therefore, ZHER2-BNC/LP is expected to be a carrier that releases small-molecule drugs into the target cell cytoplasm and delivers a radiosensitizer such as inorganic nanoparticles, enabling combination therapy with X-rays to the target tumor.

16.
Biotechnol J ; 14(9): e1800704, 2019 Sep.
Article En | MEDLINE | ID: mdl-31283105

Xylitol is a highly valuable commodity chemical used extensively in the food and pharmaceutical industries. The production of xylitol from d-xylose involves a costly and polluting catalytic hydrogenation process. Biotechnological production from lignocellulosic biomass by micro-organisms like yeasts is a promising option. In this study, xylitol is produced from lignocellulosic biomass by a recombinant strain of Saccharomyces cerevisiae (S. cerevisiae) (YPH499-SsXR-AaBGL) expressing cytosolic xylose reductase (Scheffersomyces stipitis xylose reductase [SsXR]), along with a ß-d-glucosidase (Aspergillus aculeatus ß-glucosidase 1 [AaBGL]) displayed on the cell surface. The simultaneous cofermentation of cellobiose/xylose by this strain leads to an ≈2.5-fold increase in Yxylitol/xylose (=0.54) compared to the use of a glucose/xylose mixture as a substrate. Further improvement in the xylose uptake by the cell is achieved by a broad evaluation of several homologous and heterologous transporters. Homologous maltose transporter (ScMAL11) shows the best performance in xylose transport and is used to generate the strain YPH499-XR-ScMAL11-BGL with a significantly improved xylitol production capacity from cellobiose/xylose coutilization. This report constitutes a promising proof of concept to further scale up the biorefinery industrial production of xylitol from lignocellulose by combining cell surface and metabolic engineering in S. cerevisiae.


Cellobiose/metabolism , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , beta-Glucosidase/metabolism , Biomass , Lignin/metabolism
17.
J Biosci Bioeng ; 126(1): 119-125, 2018 Jul.
Article En | MEDLINE | ID: mdl-29428803

Polyacrylic acid (PAA)-modified titanium peroxide nanoparticles (PAA-TiOx NPs) are promising radiosensitizers. PAA-TiOx NPs were synthesized from commercial TiO2 nanoparticles that were modified with PAA and functionalized by H2O2 treatment. To realize practical clinical uses for PAA-TiOx NPs, their tissue distribution and acute toxicity were evaluated using healthy mice and mice bearing tumors derived from xenografted MIAPaCa-2 human pancreatic cancer cells. Healthy mice were injected with PAA-TiOx NPs at 25 mg/kg body weight via the tail vein, and tumor-bearing mice were injected either into the tumor locally or via the tail vein. The concentration of PAA-TiOx NPs in major organs was determined over time using inductively coupled-plasma atomic emission spectrometry. After 1 h, 12% of the PAA-TiOx NP dose had accumulated in the tumor, and 2.8% of the dose remained after 1 week. Such high accumulation could be associated with enhanced permeability and retention effects of the tumor, as PAA-TiOx NPs are composed of inorganic particles and polymers, without tumor-targeting molecules. The liver accumulated the largest proportion of the injected nanoparticles, up to 42% in tumor-bearing mice. Blood biochemical parameters were also investigated after intravenous injection of PAA-TiOx NPs in healthy mice. PAA-TiOx NPs invoked a slight change in various liver-related biochemical parameters, but no liver injury was observed over the practical dose range. In the future, PAA-TiOx NPs should be modified to prevent accumulation in the liver and minimize risk to patients.


Acrylic Resins/chemistry , Nanoparticles , Radiation-Sensitizing Agents/adverse effects , Radiation-Sensitizing Agents/chemical synthesis , Radiation-Sensitizing Agents/pharmacokinetics , Titanium/chemistry , Acrylic Resins/adverse effects , Acrylic Resins/pharmacokinetics , Animals , Cell Line, Tumor , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/adverse effects , Nanoparticles/chemistry , Nanoparticles/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/radiotherapy , Peroxides/adverse effects , Peroxides/chemical synthesis , Peroxides/chemistry , Peroxides/pharmacokinetics , Polymers/metabolism , Radiation-Sensitizing Agents/chemistry , Tissue Distribution , Titanium/adverse effects , Titanium/pharmacokinetics , Xenograft Model Antitumor Assays
18.
Chem Commun (Camb) ; 53(49): 6605-6608, 2017 Jun 16.
Article En | MEDLINE | ID: mdl-28580473

Highly discriminative transformation of α,ß-unsaturated esters in the presence of enones using two types of phosphonium salts, and their application to the synthesis of oxacyclic compounds in six steps in one pot have been achieved.

19.
Free Radic Res ; 50(12): 1319-1328, 2016 Dec.
Article En | MEDLINE | ID: mdl-27778515

An induction of polyacrylic acid-modified titanium dioxide with hydrogen peroxide nanoparticles (PAA-TiO2/H2O2 NPs) to a tumor exerted a therapeutic enhancement of X-ray irradiation in our previous study. To understand the mechanism of the radiosensitizing effect of PAA-TiO2/H2O2 NPs, analytical observations that included DLS, FE-SEM, FT-IR, XAFS, and Raman spectrometry were performed. In addition, highly reactive oxygen species (hROS) which PAA-TiO2/H2O2 NPs produced with X-ray irradiation were quantified by using a chemiluminescence method and a EPR spin-trapping method. We found that PAA-TiO2/H2O2 NPs have almost the same characteristics as PAA-TiO2. Surprisingly, there were no significant differences in hROS generation. However, the existence of H2O2 was confirmed in PAA-TiO2/H2O2 NPs, because spontaneous hROS production was observed w/o X-ray irradiation. In addition, PAA-TiO2/H2O2 NPs had a curious characteristic whereby they absorbed H2O2 molecules and released them gradually into a liquid phase. Based on these results, the H2O2 was continuously released from PAA-TiO2/H2O2 NPs, and then released H2O2 assumed to be functioned indirectly as a radiosensitizing factor.


Acrylic Resins/chemistry , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Radiation-Sensitizing Agents/chemistry , Titanium/chemistry , Reactive Oxygen Species
20.
Radiat Oncol ; 11(1): 91, 2016 Jul 07.
Article En | MEDLINE | ID: mdl-27386977

BACKGROUND: Biological applications of nanoparticles are rapidly increasing, which introduces new possibilities to improve the efficacy of radiotherapy. Here, we synthesized titanium peroxide nanoparticles (TiOxNPs) and investigated their efficacy as novel agents that can potently enhance the effects of radiation in the treatment of pancreatic cancer. METHODS: TiOxNPs and polyacrylic acid-modified TiOxNPs (PAA-TiOxNPs) were synthesized from anatase-type titanium dioxide nanoparticles (TiO2NPs). The size and morphology of the PAA-TiOxNPs was evaluated using transmission electron microscopy and dynamic light scattering. The crystalline structures of the TiO2NPs and PAA-TiOxNPs with and without X-ray irradiation were analyzed using X-ray absorption. The ability of TiOxNPs and PAA-TiOxNPs to produce reactive oxygen species in response to X-ray irradiation was evaluated in a cell-free system and confirmed by flow cytometric analysis in vitro. DNA damage after X-ray exposure with or without PAA-TiOxNPs was assessed by immunohistochemical analysis of γ-H2AX foci formation in vitro and in vivo. Cytotoxicity was evaluated by a colony forming assay in vitro. Xenografts were prepared using human pancreatic cancer MIAPaCa-2 cells and used to evaluate the inhibition of tumor growth caused by X-ray exposure, PAA-TiOxNPs, and the combination of the two. RESULTS: The core structures of the PAA-TiOxNPs were found to be of the anatase type. The TiOxNPs and PAA-TiOxNPs showed a distinct ability to produce hydroxyl radicals in response to X-ray irradiation in a dose- and concentration-dependent manner, whereas the TiO2NPs did not. At the highest concentration of TiOxNPs, the amount of hydroxyl radicals increased by >8.5-fold following treatment with 30 Gy of radiation. The absorption of PAA-TiOxNPs enhanced DNA damage and resulted in higher cytotoxicity in response to X-ray irradiation in vitro. The combination of the PAA-TiOxNPs and X-ray irradiation induced significantly stronger tumor growth inhibition compared to treatment with either PAA-TiOxNPs or X-ray alone (p < 0.05). No apparent toxicity or weight loss was observed for 43 days after irradiation. CONCLUSIONS: TiOxNPs are potential agents for enhancing the effects of radiation on pancreatic cancer and act via hydroxyl radical production; owing to this ability, they can be used for pancreatic cancer therapy in the future.


Pancreatic Neoplasms/pathology , Radiation-Sensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Titanium/pharmacology , Absorptiometry, Photon , Animals , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/radiation effects , Humans , Male , Metal Nanoparticles , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Reactive Oxygen Species/radiation effects , X-Rays , Xenograft Model Antitumor Assays
...