Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38889935

RESUMEN

The basidiomycetous yeast Pseudozyma tsukubaensis is known as an industrial mannosylerythritol lipid producer. In this study, the PtURA5 marker gene was deleted by homologous recombination. Using the PtURA5-deleted mutant as a host strain, we obtained a derivative disrupted for the PtKU70 gene, a putative ortholog of the KU70 gene encoding a protein involved in the non-homologous end-joining pathway of DNA repair. Subsequently, the introduced PtURA5 gene was re-deleted by marker recycling. These results demonstrated that the PtURA5 gene can be used as a recyclable marker gene. Although the frequency of homologous recombination has been shown to be increased by KU70 disruption in other fungi, the PtKU70-disrupted strain of P. tsukubaensis did not demonstrate an elevated frequency of homologous recombination. Furthermore, the PtKU70-disrupted strain did not show increased susceptibility to bleomycin. These results suggested that the function of this KU70 ortholog in P. tsukubaensis is distinct from that in other fungi.

2.
Front Bioeng Biotechnol ; 12: 1398467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812916

RESUMEN

Acetogens are among the key microorganisms involved in the bioproduction of commodity chemicals from diverse carbon resources, such as biomass and waste gas. Thermophilic acetogens are particularly attractive because fermentation at higher temperatures offers multiple advantages. However, the main target product is acetic acid. Therefore, it is necessary to reshape metabolism using genetic engineering to produce the desired chemicals with varied carbon lengths. Although such metabolic engineering has been hampered by the difficulty involved in genetic modification, a model thermophilic acetogen, M. thermoacetica ATCC 39073, is the case with a few successful cases of C2 and C3 compound production, other than acetate. This brief report attempts to expand the product spectrum to include C4 compounds by using strain Y72 of Moorella thermoacetica. Strain Y72 is a strain related to the type strain ATCC 39073 and has been reported to have a less stringent restriction-modification system, which could alleviate the cumbersome transformation process. A simplified procedure successfully introduced a key enzyme for acetoin (a C4 chemical) production, and the resulting strains produced acetoin from sugars and gaseous substrates. The culture profile revealed varied acetoin yields depending on the type of substrate and culture conditions, implying the need for further engineering in the future. Thus, the use of a user-friendly chassis could benefit the genetic engineering of M. thermoacetica.

3.
Appl Microbiol Biotechnol ; 108(1): 296, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607413

RESUMEN

Sophorolipids (SLs) are promising glycolipid biosurfactants as they are easily produced and functional. SLs from microorganisms are comprised of mixtures of multiple derivatives that have different structures and properties, including well-known acidic and lactonic SL (ASLs and LSLs, respectively). In this study, we established a method for analyzing all SL derivatives in the products of Starmerella bombicola, a typical SL-producing yeast. Detailed component analyses of S. bombicola products were carried out using reversed-phase high-performance liquid chromatography and mass spectrometry. Methanol was used as the eluent as it is a good solvent for all SL derivatives. With this approach, it was possible to not only quantify the ratio of the main components of ASL, LSL, and SL glycerides but also confirm trace components such as SL mono-glyceride and bola-form SL (sophorose at both ends); notably, this is the first time these components have been isolated and identified successfully in naturally occurring SLs. In addition, our results revealed a novel SL derivative in which a fatty acid is bonded in series to the ASL, which had not been reported previously. Using the present analysis method, it was possible to easily track compositional changes in the SL components during culture. Our results showed that LSL and ASL are produced initially and that SL glycerides accumulate from the middle stage during the fermentation process. KEY POINTS: • An easy and detailed component analysis method for sophorolipids (SLs) is introduced. • Multiple SL derivatives were identified different from known SLs. • A novel hydrophobic acidic SL was isolated and characterized.


Asunto(s)
Ácidos Oléicos , Saccharomycetales , Ácidos Grasos , Glicéridos
4.
AMB Express ; 14(1): 20, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38337099

RESUMEN

Sixteen strains of basidiomycetous yeasts were evaluated for their capability to produce ergothioneine (EGT), an amino acid derivative with strong antioxidant activity. The cells were cultured in either two synthetic media or yeast mold (YM) medium for 72 h, after which cytosolic constituents were extracted from the cells with hot water. After analyzing the extracts via liquid chromatography-mass spectrometry (LC-MS), we found that all strains produced varying amounts of EGT. The EGT-producing strains, including Ustilago siamensis, Anthracocystis floculossa, Tridiomyces crassus, Ustilago shanxiensis, and Moesziomyces antarcticus, were subjected to flask cultivation in YM medium. U. siamensis CBS9960 produced the highest amount of EGT at 49.5 ± 7.0 mg/L after 120 h, followed by T. crassus at 30.9 ± 1.8 mg/L. U. siamensis was also cultured in a jar fermenter and produced slightly higher amounts of EGT than under flask cultivation. The effects of culture conditions, particularly the addition of precursor amino acids, on EGT production by the selected strains were also evaluated. U. siamensis showed a 1.5-fold increase in EGT production with the addition of histidine, while U. shanxiensis experienced a 1.8-fold increase in EGT production with the addition of methionine. These results suggest that basidiomycetous yeasts could serve an abundant source for natural EGT producers.

5.
Environ Sci Pollut Res Int ; 31(9): 13941-13953, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265596

RESUMEN

The degradation of biodegradable plastics poses a significant environmental challenge and requires effective solutions. In this study, an esterase derived from a phyllosphere yeast Pseudozyma antarctica (PaE) enhanced the degradation and mineralization of poly(butylene succinate-co-adipate) (PBSA) film in soil. PaE was found to substitute for esterases from initial degraders and activate sequential esterase production from soil microbes. The PBSA film pretreated with PaE (PBSA-E) rapidly diminished and was mineralized in soil until day 55 with high CO2 production. Soil with PBSA-E maintained higher esterase activities with enhancement of microbial abundance, whereas soil with inactivated PaE-treated PBSA film (PBSA-inact E) showed gradual degradation and time-lagged esterase activity increases. The fungal genera Arthrobotrys and Tetracladium, as possible contributors to PBSA-film degradation, increased in abundance in soil with PBSA-inact E but were less abundant in soil with PBSA-E. The dominance of the fungal genus Fusarium and the bacterial genera Arthrobacter and Azotobacter in soil with PBSA-E further supported PBSA degradation. Our study highlights the potential of PaE in addressing concerns associated with biodegradable plastic persistence in agricultural and environmental contexts.


Asunto(s)
Plásticos Biodegradables , Microbiota , Poliésteres/metabolismo , Esterasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Suelo , Plásticos Biodegradables/metabolismo , Plásticos/metabolismo
6.
Biotechnol Biofuels Bioprod ; 17(1): 13, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281982

RESUMEN

BACKGROUND: Isopropanol (IPA) is a commodity chemical used as a solvent or raw material for polymeric products, such as plastics. Currently, IPA production depends largely on high-CO2-emission petrochemical methods that are not sustainable. Therefore, alternative low-CO2 emission methods are required. IPA bioproduction using biomass or waste gas is a promising method. RESULTS: Moorella thermoacetica, a thermophilic acetogenic microorganism, was genetically engineered to produce IPA. A metabolic pathway related to acetone reduction was selected, and acetone conversion to IPA was achieved via the heterologous expression of secondary alcohol dehydrogenase (sadh) in the thermophilic bacterium. sadh-expressing strains were combined with acetone-producing strains, to obtain an IPA-producing strain. The strain produced IPA as a major product using hexose and pentose sugars as substrates (81% mol-IPA/mol-sugar). Furthermore, IPA was produced from CO, whereas acetate was an abundant byproduct. Fermentation using syngas containing both CO and H2 resulted in higher IPA production at the specific rate of 0.03 h-1. The supply of reducing power for acetone conversion from the gaseous substrates was examined by supplementing acetone to the culture, and the continuous and rapid conversion of acetone to IPA showed a sufficient supply of NADPH for Sadh. CONCLUSIONS: The successful engineering of M. thermoacetica resulted in high IPA production from sugars. M. thermoacetica metabolism showed a high capacity for acetone conversion to IPA in the gaseous substrates, indicating acetone production as the bottleneck in IPA production for further improving the strain. This study provides a platform for IPA production via the metabolic engineering of thermophilic acetogens.

7.
J Sci Food Agric ; 104(4): 2518-2525, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938188

RESUMEN

BACKGROUND: Xylobiose, a non-digestible disaccharide, largely contributes to the beneficial physiological effects of xylooligosaccharides. However, there is insufficient evidence to assess the direct effect of xylobiose on intestinal barrier function. Here, we investigated the intestinal barrier function in human intestinal Caco-2 cells treated with xylobiose. RESULTS: In total, 283 genes were upregulated and 256 genes were downregulated in xylobiose-treated Caco-2 cells relative to the controls. We focused on genes related to intestinal barrier function, such as tight junction (TJ) and heat shock protein (HSP). Xylobiose decreased the expression of the TJ gene Claudin 2 (CLDN2) and increased the expression of the cytoprotective HSP genes HSPB1 and HSPA1A, which encode HSP27 and HSP70, respectively. Immunoblot analysis confirmed that xylobiose suppressed CLDN2 expression and enhanced HSP27 and HSP70 expression. A quantitative reverse transcription-PCR and promoter assays indicated that xylobiose post-transcriptionally regulated CLDN2 and HSPB1 levels. Additionally, selective inhibition of phosphatidyl-3-inositol kinase (PI3K) inhibited xylobiose-mediated CLDN2 expression, whereas HSP27 expression induced by xylobiose was sensitive to the inhibition of PI3K, mitogen-activated protein kinase kinase and Src. CONCLUSION: The results of the present study reveal that xylobiose suppresses CLDN2 and increases HSP27 expression in intestinal Caco-2 cells via post-transcriptional regulation, potentially strengthening intestinal barrier integrity; however, these effects seem to occur via different signaling pathways. Our findings may help to assess the physiological role of xylobiose. © 2023 Society of Chemical Industry.


Asunto(s)
Claudina-2 , Proteínas de Choque Térmico HSP27 , Humanos , Células CACO-2 , Proteínas de Choque Térmico HSP27/metabolismo , Claudina-2/metabolismo , Mucosa Intestinal/metabolismo , Funcion de la Barrera Intestinal , Proteínas de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/genética , Disacáridos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo
8.
Front Bioeng Biotechnol ; 11: 1243595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920243

RESUMEN

Mannosylerythritol lipids (MELs) are extracellular glycolipids produced by the basidiomycetous yeast strains. MELs consist of the disaccharide mannosylerythritol, which is acylated with fatty acids and acetylated at the mannose moiety. In the MEL biosynthesis pathway, an acyltransferase from Pseudozyma tsukubaensis, PtMAC2p, a known excellent MEL producer, has been identified to catalyze the acyl-transfer of fatty acid to the C3'-hydroxyl group of mono-acylated MEL; however, its structure remains unclear. Here, we performed X-ray crystallography of recombinant PtMAC2p produced in Escherichia coli and homogeneously purified it with catalytic activity in vitro. The crystal structure of PtMAC2p was determined by single-wavelength anomalous dispersion using iodide ions. The crystal structure shows that PtMAC2p possesses a large putative catalytic tunnel at the center of the molecule. The structural comparison demonstrated that PtMAC2p is homologous to BAHD acyltransferases, although its amino acid-sequence identity was low (<15%). Interestingly, the HXXXD motif, which is a conserved catalytic motif in the BAHD acyltransferase superfamily, is partially conserved as His158-Thr159-Leu160-Asn161-Gly162 in PtMAC2p, i.e., D in the HXXXD motif is replaced by G in PtMAC2p. Site-directed mutagenesis of His158 to Ala resulted in more than 1,000-fold decrease in the catalytic activity of PtMAC2p. These findings suggested that His158 in PtMAC2p is the catalytic residue. Moreover, in the putative catalytic tunnel, hydrophobic amino acid residues are concentrated near His158, suggesting that this region is a binding site for the fatty acid side chain of MEL (acyl acceptor) and/or acyl-coenzyme A (acyl donor). To our knowledge, this is the first study to provide structural insight into the catalytic activity of an enzyme involved in MEL biosynthesis.

9.
Proteins ; 91(9): 1341-1350, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37144255

RESUMEN

TcXyn30A from Talaromyces cellulolyticus, which belongs to subfamily 7 of the glycoside hydrolase family 30 (GH30-7), releases xylose from the reducing end of xylan and xylooligosaccharides (XOSs), the so-called reducing-end xylose-releasing exoxylanase (ReX). In this study, the crystal structures of TcXyn30A with and without xylose at subsite +1 (the binding site of the xylose residue at the reducing end) were determined. This is the first report on the structure of ReX in the family GH30-7. TcXyn30A forms a dimer. The complex structure of TcXyn30A with xylose revealed that subsite +1 is located at the dimer interface. TcXyn30A recognizes xylose at subsite +1 composed of amino acid residues from each monomer and blocks substrate binding to subsite +2 by dimer formation. Thus, the dimeric conformation is responsible for ReX activity. The structural comparison between TcXyn30A and the homologous enzyme indicated that subsite -2 is composed of assembled three stacked Trp residues, Trp49, Trp333, and Trp334, allowing TcXyn30A to accommodate xylan and any branched XOSs decorated with a substitution such as α-1,2-linked 4-O-methyl-d-glucuronic acid or α-1,2- and/or -1,3-linked L-arabinofuranose. These findings provide an insight into the structural determinants for ReX activity of TcXyn30A.


Asunto(s)
Glicósido Hidrolasas , Xilosa , Glicósido Hidrolasas/química , Xilosa/química , Xilosa/metabolismo , Xilanos/metabolismo , Oligosacáridos/química , Especificidad por Sustrato
10.
J Biosci Bioeng ; 136(1): 13-19, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37100649

RESUMEN

Acetogens grow autotrophically and use hydrogen (H2) as the energy source to fix carbon dioxide (CO2). This feature can be applied to gas fermentation, contributing to a circular economy. A challenge is the gain of cellular energy from H2 oxidation, which is substantially low, especially when acetate formation coupled with ATP production is diverted to other chemicals in engineered strains. Indeed, an engineered strain of the thermophilic acetogen Moorella thermoacetica that produces acetone lost autotrophic growth on H2 and CO2. We aimed to recover autotrophic growth and enhance acetone production, in which ATP production was assumed to be a limiting factor, by supplementing with electron acceptors. Among the four selected electron acceptors, thiosulfate and dimethyl sulfoxide (DMSO) enhanced both bacterial growth and acetone titers. DMSO was the most effective and was further analyzed. We showed that DMSO supplementation enhanced intracellular ATP levels, leading to increased acetone production. Although DMSO is an organic compound, it functions as an electron acceptor, not a carbon source. Thus, supplying electron acceptors is a potential strategy to complement the low ATP production caused by metabolic engineering and to improve chemical production from H2 and CO2.


Asunto(s)
Dióxido de Carbono , Moorella , Dióxido de Carbono/metabolismo , Acetona/metabolismo , Electrones , Dimetilsulfóxido/metabolismo , Hidrógeno/metabolismo , Moorella/genética , Moorella/metabolismo , Oxidantes/metabolismo , Adenosina Trifosfato/metabolismo
11.
J Biosci Bioeng ; 135(6): 423-432, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002018

RESUMEN

N-linked oligosaccharides in the fission yeast Schizosaccharomyces pombe contain large amounts of d-galactose (Gal), which mainly comprises α1,2- and α1,3-linked Gal except for pyruvylated ß1,3-linked Gal (PvGalß) at the non-reducing end. The PvGalß unit of N-glycans is important for regulating nonsexual flocculation and invasive growth, but the mechanistic basis for ß-galactosylation in fission yeast is poorly understood. To gain insight into this mechanism, we have characterized three genes previously identified to be involved in PvGalß biosynthesis (pvg2, pvg3, and pvg5), with a focus on pvg3, which is predicted to contain a domain conserved in galactosyltransferase family 31 (GT31) proteins. Fluorescent microscopy revealed that Pvg3 is stably localized at the Golgi membrane, regardless of the presence of pvg2+ or pvg5+, suggesting that Pvg2 and Pvg5 are essential for the function of Pvg3 as a ß1,3-galactosyltransferase, and not for its localization to the Golgi. Mutation of the GT31 family DXD motif and GT-A fold in Pvg3 resulted in loss of catalytic activity in vivo, supporting the idea that Pvg3 is a GT-A type ß1,3-galactosyltransferase. Docking simulations further indicated that Pvg3 can recognize donor and acceptor substrates suitable for ß-(1→3) bond formation. Yeast two-hybrid assay showed that Pvg5 physically interacts with Pvg3 and the pyruvyltransferase Pvg1. Collectively, these results provide insight into ß-galactosylation catalyzed by Pvg3 and the supporting role of Pvg5 in PvGalß biosynthesis.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/metabolismo , Galactosa/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo
12.
J Oleo Sci ; 71(9): 1421-1426, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35965089

RESUMEN

The basidiomycetous yeast Pseudozyma tsukubaensis produces a mannosylerythritol lipid (MEL) homologue, a diastereomer type of MEL-B, from olive oil. In a previous study, MEL-B production was increased by the overexpression of lipase PaLIPAp in P. tsukubaensis 1E5, through the enhancement of oil consumption. In the present study, RNA sequence analysis was used to identify a promoter able to induce high-level PaLIPA expression. The recombinant strain, expressing PaLIPA via the translation elongation factor 1 alpha/Tu promoter, showed higher lipase activity, rates of oil degradation, and MEL-B production than the strain which generated in our previous study.


Asunto(s)
Ustilaginales , Basidiomycota , Glucolípidos , Lipasa/genética , Lipasa/metabolismo , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Tensoactivos/metabolismo , Ustilaginales/genética
13.
Chemistry ; 28(55): e202201733, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35761481

RESUMEN

Synthesis of three types of purpose-designed mannosylerythritol lipid (MEL)-D analogues with decanoyl groups, ß-GlcEL-D, α-GlcEL-D, and α-MEL-D, was accomplished utilizing our boron-mediated aglycon delivery (BMAD) methods. Their self-assembling properties, recovery effects on damaged skin cells, and antibacterial activity were evaluated. It was revealed, for the first time, that α-GlcEL-D and α-MEL-D only generated giant vesicles, indicating that slight differences in the steric configuration of an erythritol moiety and fatty acyl chains affect the ability to form vesicles. Analogue α-MEL-D exhibited significant recovery effects on damaged skin cells. Furthermore, α-MEL-D exhibited antibacterial activity as high as that for MEL-D, indicating that α-MEL-D is a promising artificial sugar-based material candidate for enhancing the barrier function of the stratum corneum, superior to a known cosmetic ingredient, and possesses antibacterial activity.


Asunto(s)
Boro , Tensoactivos , Antibacterianos/farmacología , Eritritol , Glucolípidos , Azúcares , Tensoactivos/farmacología
14.
Front Microbiol ; 13: 897066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633713

RESUMEN

Hydrogen (H2) converted to reducing equivalents is used by acetogens to fix and metabolize carbon dioxide (CO2) to acetate. The utilization of H2 enables not only autotrophic growth, but also mixotrophic metabolism in acetogens, enhancing carbon utilization. This feature seems useful, especially when the carbon utilization efficiency of organic carbon sources is lowered by metabolic engineering to produce reduced chemicals, such as ethanol. The potential advantage was tested using engineered strains of Moorella thermoacetica that produce ethanol. By adding H2 to the fructose-supplied culture, the engineered strains produced increased levels of acetate, and a slight increase in ethanol was observed. The utilization of a knockout strain of the major acetate production pathway, aimed at increasing the carbon flux to ethanol, was unexpectedly hindered by H2-mediated growth inhibition in a dose-dependent manner. Metabolomic analysis showed a significant increase in intracellular NADH levels due to H2 in the ethanol-producing strain. Higher NADH level was shown to be the cause of growth inhibition because the decrease in NADH level by dimethyl sulfoxide (DMSO) reduction recovered the growth. When H2 was not supplemented, the intracellular NADH level was balanced by the reversible electron transfer from NADH oxidation to H2 production in the ethanol-producing strain. Therefore, reversible hydrogenase activity confers the ability and flexibility to balance the intracellular redox state of M. thermoacetica. Tuning of the redox balance is required in order to benefit from H2-supplemented mixotrophy, which was confirmed by engineering to produce acetone.

15.
J Oleo Sci ; 71(1): 119-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35013034

RESUMEN

Moesziomyces antarcticus is a basidiomycetous yeast that produces mannosylerythritol lipids (MELs), which have potential applications as bio-based functional materials in various oleochemical industries, the cosmetics, toiletry, agriculture, and pharmaceutical industries. To better understand the MEL producer, we characterized the central metabolic pathways of M. antarcticus strain T-34 grown on glucose or olive oil via metabolomics. The relative fatty acid content was higher in the cells cultured in olive oil compared to glucose, while the acetyl-CoA content was lower in cells cultured in olive oil. The levels of the tricarboxylic acid cycle metabolites citrate/isocitrate, α-ketoglutarate, and succinate were lower in olive oil compared to glucose, while fumarate and malate levels exhibited the opposite pattern. Pyruvate was not detected in olive oil compared to glucose culture. The levels of glycerol, as well as trehalose, myo-inositol, threitol/erythritol, and mannitol/sorbitol, were higher in olive oil compared to glucose cultures. The ATP level was lower in olive oil compared to glucose culture, although the assimilation of fatty acids produced by digestion of olive oil should promote large amounts of ATP production. The possibility that ATP regeneration by respiratory chain complex promote oil utilization and MEL production in M. antarcticus T-34 was found based on the results of this metabolomic analysis.


Asunto(s)
Basidiomycota/metabolismo , Glucolípidos/biosíntesis , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Acetilcoenzima A/metabolismo , Adenosina Trifosfato/metabolismo , Ciclo del Ácido Cítrico , Medios de Cultivo , Técnicas de Cultivo , Ácidos Grasos/metabolismo , Fumaratos/metabolismo , Glucosa , Glicerol/metabolismo , Malatos/metabolismo , Aceite de Oliva
16.
Chembiochem ; 23(2): e202100631, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34783433

RESUMEN

Mannosylerythritol lipids (MELs), which are one of the representative sugar-based biosurfactants (BSs) produced by microorganisms, have attracted much attention in various fields in the sustainable development goals (SDGs) era. However, they are inseparable mixtures with respect to the chain length of the fatty acids. In this study, self-assembling properties and structure-activity relationship (SAR) studies of recovery effects on damaged skin cells using chemically synthesized MELs were investigated. It was revealed, for the first time, that synthetic and homogeneous MELs exhibited significant self-assembling properties to form droplets or giant vesicles. In addition, a small difference in the length of the fatty acid chains of the MELs significantly affected their recovery effects on the damaged skin cells. MELs with medium or longer length alkyl chains exhibited much higher recovery effects than that of C18-ceramide NP.


Asunto(s)
Glucolípidos/química , Glucolípidos/farmacología , Piel/efectos de los fármacos , Células Cultivadas , Humanos , Piel/lesiones , Relación Estructura-Actividad
17.
Microbiol Resour Announc ; 10(48): e0070621, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854721

RESUMEN

The basidiomycetous yeast Ustilago shanxiensis CBS 10075, which was isolated from a wilting leaf in China, produces mannosylerythritol lipid (MEL) biosurfactants. Here, we report the draft genome sequence of U. shanxiensis CBS 10075, which was 21.7 Mbp in size, with a GC content of 52.55%, comprising 65 scaffolds.

18.
Appl Microbiol Biotechnol ; 105(18): 6679-6689, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34459953

RESUMEN

A series of culture media for haloarchaea were evaluated to optimize the production of ultrahigh-molecular-weight (UHMW) poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei. Cells of H. mediterranei grew (> 1 g/L of dry cell weight) and accumulated PHBV upon flask cultivation in 10 medium types with neutral pH and NaCl concentration > 100 g/L. Molecular weight and compositional analysis revealed that the number-average molecular weight (Mn) of PHBV produced with six selected types of media ranged from 0.8 to 3.5 × 106 g/mol and the 3-hydroxyvalerate (3HV) composition ranged from 8 to 36 mol%. Cultivation in two NBRC media, 1214 and 1380, resulted in the production of PHBV with an Mn of more than 3.0 × 106 g/mol and a weight-average molecular weight of more than 5.0 × 106 g/mol, indicating the production of UHMW-PHBV. These culture media contained small amount of complex nutrients like yeast extract and casamino acids, suggesting that H. mediterranei likely produced UHMW-PHBV on poor nutrient condition. Haloferax mediterranei grown in NBRC medium 1380 produced PHBV with the highest 3HV composition. A solvent-cast film of UHMW-PHBV with 26.4 mol% 3HV produced from 1-L flask cultivation with NBRC medium 1380 was found to be flexible and semi-transparent. Thermal analysis of the UHMW-PHBV cast film revealed melting and glass-transition temperatures of 90.5 °C and - 2.7 °C, respectively. KEY POINTS: • Haloarchaeal culture media were evaluated to produce UHMW-PHBV by H. mediterranei. • UHMW-PHBV with varied molecular weight was produced dependent on culture media. • Semi-transparent film could be made from UHMW-PHBV with 26.4 mol% 3HV.


Asunto(s)
Haloferax mediterranei , Polihidroxialcanoatos , Medios de Cultivo , Peso Molecular , Poliésteres
19.
J Oleo Sci ; 70(8): 1175-1179, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34248100

RESUMEN

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a promising tool for the screening of glycolipid-type biosurfactants (BSs) from a crude extract of microbial products. However, it is unsuitable for the detection of lower molecular weight products because the observed ions are overlapped with matrix-derived ions at lower mass range. In this study, we applied a "matrix-free" surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) analysis using a through-hole alumina membrane as an ionization-assisting substrate. Using this method, we could detect a variety of lower molecular weight products in an extract of a glycolipid BS producer with good sensitivity. In addition, the culture solution could be analyzed directly by this method.


Asunto(s)
Glucolípidos/análisis , Tensoactivos/análisis , Óxido de Aluminio/química , Basidiomycota/metabolismo , Glucolípidos/biosíntesis , Glucolípidos/química , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Membranas Artificiales , Peso Molecular , Tensoactivos/química , Tensoactivos/metabolismo
20.
PLoS One ; 16(3): e0247462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33730094

RESUMEN

The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases A and B act as upper regulators in the proteolytic network of the model yeast, Saccharomyces cerevisiae. We searched for orthologous genes encoding proteases A and B in the genome of P. antarctica GB-4(0) based on the predicted amino acid sequences. We found two gene candidates, PaPRO1 and PaPRO2, with conserved catalytically important domains and signal peptides indicative of vacuolar protease function. We then prepared gene-deletion mutants of strain GB-4(0), ΔPaPRO1 and ΔPaPRO2, and evaluated PaE stability in culture by immunoblotting analysis. Both mutants exhibited sufficient production of PaE without degradation fragments, while the parent strain exhibited the degradation fragments. Therefore, we concluded that the protease A and B orthologous genes are related to the degradation of PaE. To produce a large quantity of PaE, we made a PaPRO2 deletion mutant of a PaE-overexpression strain named XG8 by introducing a PaE high-production cassette into the strain GB-4(0). The ΔPaPRO2 mutant of XG8 was able to produce PaE without the degradation fragments during large-scale cultivation in a 3-L jar fermenter for 3 days at 30°C. After terminating the agitation, the PaE activity in the XG8 ΔPaPRO2 mutant culture was maintained for the subsequent 48 h incubation at 25°C regardless of remaining cells, while activity in the XG8 control was reduced to 55.1%. The gene-deleted mutants will be useful for the development of industrial processes of PaE production and storage.


Asunto(s)
Basidiomycota/enzimología , Basidiomycota/metabolismo , Secuencia de Aminoácidos/genética , Basidiomycota/genética , Plásticos Biodegradables/metabolismo , ADN de Hongos/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas Fúngicas/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Xilosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...