Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nurs Rep ; 14(1): 413-427, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391077

RESUMEN

With the International Commission on Radiological Protection's (ICRP) reduction in the radiation dose threshold for cataracts, evaluating and preventing radiation exposure to the lens of the eye among interventional radiology (IR) staff have become urgent tasks. In this study, we focused on differences in lens-equivalent dose (HT Lens) to which IR nurses in three hospitals were exposed and aimed to identify factors underlying these differences. According to analyses of time-, distance-, and shielding-related factors, the magnitude of the HT Lens dose to which IR nurses were exposed could be explained not by time or shielding but by the distance between the X-ray exposure field and the location of the IR nurse. This distance tended to be shorter in hospitals with fewer staff. The most effective means of reducing the exposure of the lenses of IR nurses' eyes to radiation is to position them at least two meters from the radiation source during angiography procedures. However, some hospitals must provide IR departments with comparatively few staff. In work environments where it is infeasible to reduce exposure by increasing distance, interventions to reduce time by managing working practices and investment in shielding equipment are also important. This study was not registered.

2.
Radiat Prot Dosimetry ; 199(15-16): 1774-1778, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819354

RESUMEN

Chronic radiation exposure increases the risk of skin damage of medical personnel engaged in radiology. However, hand dose measurements in computed tomography (CT) for diagnostic purposes have not been evaluated. The occupational radiation dose to the hands of CT assistants was herein investigated to evaluate its compliance with the equivalent dose limit for the hand (500 mSv/year). The occupational doses of nine CT assistants were measured in 89 cases (April 2017-May 2018) by installing radio-photoluminescence glass dosemeters (GD-302 M) (70-µm dose-equivalent conversion coefficient = 0.37) on the dorsal aspect of both hands. The occupational dose to the hand was the highest with head holding (right: 1.14 mSv/CT scan, left: 1.07 mSv/CT scan). Considering the results for annual work, even for head holding, the hand dose of the CT-assisting personnel was insignificant. However, CT assistants should be mindful of the possibility of locally higher doses to hands.


Asunto(s)
Exposición Profesional , Humanos , Dosis de Radiación , Exposición Profesional/análisis , Mano/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Cuerpo Médico
3.
Artículo en Inglés | MEDLINE | ID: mdl-36554706

RESUMEN

Interventional radiology (IR) physicians must be equipped with personal passive dosimeters and personal protective equipment (PPE); however, they are inconsistently used. Therefore, we aimed to explore practical measures to increase PPE usage and ascertain whether these measures could lead to an actual decrease in exposure doses to IR physicians. Dosimeters and PPE were visually inspected. Then, a pre-operative briefing was conducted as a direct intervention, and the use of dosimeters and PPE was verbally confirmed. Finally, the intervention effect was verified by measuring the use rates and individual exposure doses. Because of the intervention, the use rate markedly improved and was almost 100%. However, both the effective dose rate (effective dose/fluoroscopy time) and the lens equivalent dose rate (lens equivalent dose/fluoroscopy time) showed that the intervention led to a statistically significant increase in exposure (effective dose rate: p = 0.033; lens equivalent dose rate: p = 0.003). In conclusion, the proper use of dosimeters and PPE raised the radiation exposure values for IR physicians immediately after the intervention, which was hypothesized to be due to the inclusion of exposure overlooked to date and the changes in the dosimeter management method from a single- to a double-dosimeter approach.


Asunto(s)
Cristalino , Exposición Profesional , Médicos , Humanos , Dosímetros de Radiación , Radiología Intervencionista , Equipo de Protección Personal , Exposición Profesional/prevención & control , Dosis de Radiación
4.
Radiat Prot Dosimetry ; 198(18): 1377-1386, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36062449

RESUMEN

The purpose of this study was to evaluate the effectiveness of organ effect modulation (OEM) in reducing the lens dose in 4D computed tomography (CT) of the head in volume-acquisition (NVA) mode. Six radiophotoluminescent dosemeters were placed on the head of a RANDO phantom. The doses absorbed by the organs and image noise change rate were determined. The lens doses without OEM (i.e. in the OEMoff case) were higher than those with the same target standard deviation and volume-computed tomography dose index (CTDIvol) as in the OEMoff case (p < 0.01). The image noise change rate was 11%. OEM reduced the lens dose during head 4D CT imaging in the NVA mode by 18%. Furthermore, the feasibility of lens dose reduction while ensuring sufficient image quality was confirmed under the condition in which OEM was employed with the same CTDIvol as in the OEMoff case.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Cristalino , Dosis de Radiación , Fantasmas de Imagen , Cabeza/diagnóstico por imagen
5.
Radiat Prot Dosimetry ; 198(17): 1303-1312, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35909091

RESUMEN

We demonstrate a practical calibration method and its applicability for a commercially available radiophotoluminescence dosemeter (RPLD), i.e. the GD-352M (AGC Techno Glass, Shizuoka, Japan) to eye lens dose monitoring, by performing the calibration according to the ISO recommendations. The calibration was then verified through a series of experiments. For verification of the derived calibration factor (1.21 ± 0.04, k = 1) of the RPLD, we performed standard irradiations in the ISO narrow series X-ray reference fields and the simulation measurements in the actual radiation fields in a hospital. The TLD-based commercially available dosemeters, DOSIRIS™ was also put on the ISO cylinder phantom and the RANDO phantom together with the GD-352M in the verification experiments. The personal dose equivalents Hp(3) obtained from the GD-352M and those obtained from the DOSIRIS™ were in good agreement with each other. Our results demonstrate the proper calibration of a commercially available RPLD that is applicable to the additional monitoring of the lens of the eyes for medical staff.


Asunto(s)
Cristalino , Exposición Profesional , Monitoreo de Radiación , Calibración , Humanos , Exposición Profesional/análisis , Dosis de Radiación , Dosímetros de Radiación , Monitoreo de Radiación/métodos
6.
J UOEH ; 44(1): 1-13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35249934

RESUMEN

We manufactured a wearable particle monitor (WPM), which is a simple and low-cost dust monitor. We aimed to evaluate the usefulness of the device by using it and location information of a Global Navigation Satellite System (GNSS) to measure dust generation in outdoor workplaces. We used nine WPMs and a particle counter KC-52 to measure in parallel the dust concentration diffusing standard particles in a dust exposure apparatus to evaluate the measurability of the WPM, and visualized dust generation in outdoor workplaces to evaluate its usability. We obtained location information using a GNSS in parallel with measuring with the WPM. The measured values of the WPM followed the measured values of the KC-52, with a strong correlation of the values between the KC-52 and each WPM. The discrepancy among devices tended to increase, however, because the measured values of the WPMs increased. For outdoor measurements, we could create a heat map of the relative values of dust generation by combining two data of the WPM and the GNSS. The methods of using the WPM could overview the conditions needed to produce dust emissions in dust-generating workplaces.


Asunto(s)
Polvo , Dispositivos Electrónicos Vestibles , Polvo/análisis , Monitoreo del Ambiente , Tamaño de la Partícula , Lugar de Trabajo
7.
J Neuroendovasc Ther ; 16(10): 491-497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37502201

RESUMEN

Objective: In interventional neuroradiology (INR), the evaluation of the peak skin dose (PSD) and lens dose is important because the patient radiation dose increases in cases in which the procedure is more difficult and complex. This study evaluated the radiation doses during INR procedures using a direct measurement system. Methods: Radiation dose measurements during INR were performed in 332 patients with unruptured aneurysm (URAN), dural arteriovenous fistula (DAVF), and arteriovenous malformation (AVM). The PSD and bilateral lens doses were analyzed for each disease. The Pearson correlation test was used to determine whether the PSD and lens doses were linearly related to the reference air kerma (Ka,r). Results: In all cases, the PSD and right and left lens doses were 2.36 ± 1.28 Gy, 114.2 ± 54.6 mGy, and 189.8 ± 160.3 mGy, respectively. The PSD and lens doses of the DAVF and AVM cases were significantly higher than those of the URAN case. The Pearson correlation test revealed statistically significant positive correlations between Ka,r and PSD, Ka,r and right lens dose, and Ka,r and left lens dose. Conclusion: The characteristics of radiation dose in INR were clarified. Owing to the concern of increased radiation doses exceeding the threshold values in DAVF and AVM cases, protection from radiation is required. Simple regression analysis revealed the possibility of precisely predicting PSD using Ka,r.

8.
J Neuroendovasc Ther ; 16(7): 354-360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37502341

RESUMEN

Objective: To meet the new standard of the annual dose limit for the eye lens recommended by the International Commission on Radiation Protection, radiation doses of neuroendovascular procedures in Japanese institutions were investigated. Methods: Radiation doses to operators involved in 304 neuroendovascular procedures at 30 Japanese institutions were prospectively surveyed. The institutions recruited at an annual meeting of the Japanese Society for Neuroendovascular Therapy participated voluntarily. A maximum of 10 wireless dosimeters were attached to the radiation protection (RP) goggles, the ceiling-mounted RP shielding screen, and the operators' forehead and neck over the protective clothing. Doses recorded inside the goggles were defined as eye lens doses for operators who wore RP goggles, while doses to the forehead were defined as eye lens doses for those who did not. The shielding effect rates of the protection devices were calculated, and statistical analysis was performed for the comparison of radiation doses. Results: From 296 analyzed cases, mean eye lens radiation doses per procedure were 0.088 mGy for the left eye and 0.041 mGy for the right eye. For the left eye, that dose without RP equipment was 0.176 mGy and that with RP goggles plus an RP shielding screen was 0.034 mGy. Four parameters, including left eye dose, air kerma at the patient entrance reference point, fluoroscopic time, and the total number of frames, were assessed for five types of neurovascular procedures. Of them, transarterial embolization for dural arteriovenous fistula was associated with the highest eye lens dose at 0.138 mGy. The shielding effect rates of protection goggles were 60% for the left and 55% for the right RP goggle. The mean doses to the inner and outer surfaces of the RP shielding screen were 0.831 mGy and 0.040 mGy, respectively, amounting to a shielding effect rate of 95%. Conclusion: To meet the new standard, both RP goggles and RP shielding screens are strongly recommended to be used effectively. Without proper use of radiological protection devices, the number of neuroendovascular procedures that one operator performs per year will be limited under the new guideline.

9.
J Radiat Res ; 63(1): 30-35, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34718686

RESUMEN

Ionizing radiation exposure affects the redox state in vivo. Recently, whole-blood antioxidant capacity (WBAC) has been reported to decrease in a dose-dependent manner after acute total body irradiation (TBI). However, changes in WBAC after localized and chronic irradiations have not been reported. This study analyzed changes to WBAC in mice after either localized irradiation (irradiation of the left hind leg only) or chronic TBI using the i-STrap method. Leg-localized irradiation exerted limited effects on WBAC, while WBAC decreased in a dose rate-dependent manner after TBI. Further, the WBAC reached the minimum value in a shorter period at a smaller dose rate. Our results suggest that changes in WBAC do not directly reflect absorbed dose, but may reflect radiation-induced biological damage at the systemic level. This study will contribute to the understanding of radiation-induced injuries and diseases, and will facilitate the establishment of biomarkers for radiation exposure.


Asunto(s)
Enfermedad Injerto contra Huésped , Traumatismos por Radiación , Animales , Antioxidantes , Biomarcadores , Ratones , Proteínas de Unión al ARN , Irradiación Corporal Total
10.
J Occup Health ; 63(1): e12305, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34889490

RESUMEN

PURPOSE: We investigated occupational dose to the lens of the eye for physicians engaged in radiology procedures. We evaluated the potential for compliance with the new-equivalent dose limits to the lens of the eye. Further, a "multiple radiation protection" protocol was proposed according to the basic principles of occupational health, and its effectiveness was estimated. METHODS: Physicians engaged in radiology procedure at medical facilities in Japan were included in this study. The eye lens dose (3-mm dose equivalent: Hp (3)) for each participant was measured using a small radio-photoluminescence glass dosimeter mounted on lead glasses. Physicians were directed to procedure multiple radiation protection measures to evaluate their usefulness. RESULTS: The Hp (3) was reduced by multiple radiation protection in all physicians. In particular, the Hp (3) reduced from 207.7 to 43.2 µSv/procedure and from 21.6 to 10.2 µSv/procedure in cardiovascular internal physician and cerebrovascular physician, respectively, after the implementation of the proposed multiple radiation protection measures. The dose reduction rate of these measures was 53% (range: 37%-79%). CONCLUSIONS: The radiation doses received by the eye lenses of physicians engaged in radiology procedure may exceed the dose limits to the lens of the eye if radio-protective equipment and imaging conditions are not properly controlled. However, based on the lens equivalent dose data, the implementation of "multiple radiation protection" according to the basic principles of occupational health can ensure compliance with the new-equivalent dose limits to the lens of the eye without placing an undue burden on individual physicians or medical facilities.


Asunto(s)
Cristalino , Médicos , Dosis de Radiación , Radiología , Humanos , Japón
11.
Eur J Radiol ; 143: 109925, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34482175

RESUMEN

PURPOSE: An augmented reality (AR) application to help medical staff involved in interventional radiology (IR) learn how to properly use ceiling-suspended radiation shielding screens was created, and its utility was tested from the perspective of learner motivation. METHOD: The distribution of scattered radiation in an angiography room was visualized with an AR application in three settings: when a ceiling-suspended radiation shielding screen is not used (incorrect); when there is a gap between the bottom edge of the shielding screen and the patient's torso (incorrect); and when there is no gap between the bottom edge of the shielding screen and the patient's torso (correct). This AR application was used by 33 medical staff, after which an Instructional Materials Motivation Survey (IMMS) based on the John Keller's ARCS (four categories of Attention, Relevance, Confidence, and Satisfaction) Motivation Model, consisting of 36-items with responses on a 5-point (1-5) Likert scale, was conducted. RESULTS: The overall score was a high 4.67 ± 0.30 (mean ± standard deviation). Physician's scores tended to be lower than those of other medical staff in the categories of Attention, Relevance, and Satisfaction (not statistically significant). CONCLUSIONS: The AR application to learn how to properly use ceiling-suspended radiation shielding screens was highly rated from the perspective of learner motivation.


Asunto(s)
Realidad Aumentada , Protección Radiológica , Angiografía , Humanos , Radiología Intervencionista , Tecnología
12.
Diagnostics (Basel) ; 11(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34441349

RESUMEN

A short curtain that improves on the low versatility of existing long curtains was developed as a dedicated radiation protective device for the over-table tube fluorographic imaging units. The effect of this short curtain in preventing cataracts was then examined. First, the physician lens dose reduction rate was obtained at the position of the lens. Next, the reduction rate in the collective equivalent dose for the lens of the physician's eye was estimated. The results showed that lens dose reduction rates with the long curtain and the short curtain were 88.9% (literature-based value) and 17.6%, respectively, higher with the long curtain. In our hospital, the reduction rate in the collective equivalent dose for the lens of the physician's eye was 9.8% and 17.6% with a procedures mixture, using the long curtain where technically possible and no curtain in all other procedures, and the short curtain in all procedures, respectively, higher with the short curtain. Moreover, a best available for curtains raised the reduction rate in the collective equivalent dose for the lens of the physician's eye a maximum of 25.5%. By introducing the short curtain, it can be expected to have an effect in preventing cataracts in medical staff.

13.
J Radiat Res ; 62(5): 804-811, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-33982114

RESUMEN

Radiation exposure has multiple effects on the brain, behavior and cognitive functions. It has been reported that high-dose (>20 Gy) radiation-induced behavior and cognitive aberration partly associated with severe tissue destruction. Low-dose (<3 Gy) exposure can occur in radiological disasters and cerebral endovascular treatment. However, only a few reports analyzed behavior and cognitive functions after low-dose irradiation. This study was undertaken to assess the relationship between brain neurochemistry and behavioral disruption in irradiated mice. The irradiated mice (0.5 Gy, 1 Gy and 3 Gy) were tested for alteration in their normal behavior over 10 days. A serotonin (5-HT), Dopamine, gamma-Aminobutyric acid (GABA) and cortisol analysis was carried out in blood, hippocampus, amygdala and whole brain tissue. There was a significant decline in the exploratory activity of mice exposed to 3 Gy and 1 Gy radiation in an open field test. We observed a significant short-term memory loss in 3 Gy and 1 Gy irradiated mice in Y-Maze. Mice exposed to 1 Gy and 3 Gy radiation exhibited increased anxiety in an elevated plus maze (EPM). The increased anxiety and memory loss patterns were also seen in 0.5 Gy irradiated mice, but the results were not statistically significant. In this study we observed that neurotransmitters are significantly altered after irradiation, but the neuronal cells in the hippocampus were not significantly affected. This study suggests that the low-dose radiation-induced cognitive impairment may be associated with the neurochemical in low-dose irradiation and unlike the high-dose scenario might not be directly related to the morphological changes in the brain.


Asunto(s)
Conducta Animal/efectos de la radiación , Encéfalo/efectos de la radiación , Animales , Química Encefálica/efectos de la radiación , Cognición/efectos de la radiación , Dopamina/análisis , Dopamina/sangre , Relación Dosis-Respuesta en la Radiación , Hipocampo/química , Hipocampo/efectos de la radiación , Hidrocortisona/análisis , Hidrocortisona/sangre , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Memoria a Corto Plazo/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Prueba de Campo Abierto/efectos de la radiación , Distribución Aleatoria , Serotonina/análisis , Serotonina/sangre , Conducta Espacial/efectos de la radiación , Ácido gamma-Aminobutírico/análisis , Ácido gamma-Aminobutírico/sangre
14.
Sci Rep ; 11(1): 6716, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762608

RESUMEN

Ionizing radiation exposure may not only cause acute radiation syndrome, but also an increased risk of late effects. It has been hypothesized that induction of chronic oxidative stress mediates the late effects of ionizing radiation. However, only a few reports have analyzed changes in long-term antioxidant capacity after irradiation in vivo. Our previous study demonstrated changes in whole-blood antioxidant capacity and red blood cell (RBC) glutathione levels within 50 days after total body irradiation (TBI). In this study, seven-week-old, male, C57BL/6J mice exposed to total body irradiation by X-ray and changes in whole-blood antioxidant capacity and RBC glutathione levels at ≥ 100 days after TBI were investigated. Whole-blood antioxidant capacity was chronically decreased in the 5-Gy group. The RBC reduced glutathione (GSH) level and the GSH/oxidative glutathione (GSSG) ratio were chronically decreased after ≥ 1 Gy of TBI. Interestingly, the complete blood counts (CBC) changed less with 1-Gy exposure, suggesting that GSH and the GSH/GSSG ratio were more sensitive radiation exposure markers than whole-blood antioxidant capacity and CBC counts. It has been reported that GSH depletion is one of the triggers leading to cataracts, hypertension, and atherosclerosis, and these diseases are also known as radiation-induced late effects. The present findings further suggest that chronic antioxidant reduction may contribute to the pathogenesis of late radiation effects.


Asunto(s)
Antioxidantes/metabolismo , Oxidación-Reducción/efectos de la radiación , Irradiación Corporal Total/efectos adversos , Animales , Biomarcadores , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Masculino , Ratones , Estrés Oxidativo/efectos de la radiación , Dosis de Radiación , Traumatismos por Radiación , Radiación Ionizante
15.
Phys Med ; 82: 192-199, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33647602

RESUMEN

PURPOSE: In cerebral angiography, for diagnosis and interventional neuroradiology, cone-beam computed tomography (CBCT) scan is frequently performed for evaluating brain parenchyma, cerebral hemorrhage, and cerebral infarction. However, the patient's eye lens is more frequently exposed to excessive doses in these scans than in the previous angiography and interventional neuroradiology (INR) procedures. Hence, radioprotection for the lenses is needed. This study selects the most suitable eye lens protection material for CBCT from among nine materials by evaluating the dose reduction rate and image quality. METHODS: To determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. For image quality assessment, the artifact index was calculated based on the pixel value and image noise within various regions of interest in a water phantom. RESULTS: The protective materials exhibited dose reduction; however, streak artifacts were observed near the materials. The dose reduction rate and the degree of the artifact varied significantly depending on the protective material. The dose reduction rates were 14.6%, 14.2%, and 26.0% when bismuth shield: normal (bismuth shield in the shape of an eye mask), bismuth shield: separate (two separate bismuth shields), and lead goggles were used, respectively. The "separate" bismuth shield was found to be effective in dose reduction without lowering the image quality. CONCLUSION: We found that bismuth shields and lead goggles are suitable protective devices for the optimal reduction of lens doses.


Asunto(s)
Reducción Gradual de Medicamentos , Cristalino , Tomografía Computarizada de Haz Cónico , Humanos , Fantasmas de Imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X
16.
Heliyon ; 7(1): e06063, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33553745

RESUMEN

PURPOSE: We investigated occupational dose to the lens of the eye for CT-assisting personnel for diagnostic purposes using a radio-photoluminescent glass dosimeter (RPLD) and evaluate compliance with the new equivalent dose limit for the lens of the eye (20 mSv/year). Further, we proposed the implementation of "multiple protective measures" and estimated its effect. METHOD: An eye lens dosimeter clip was developed specifically to attach RPLDs inside radiation safety glasses in an L-shape. Using a total of six RPLDs attached to the radiation safety glasses, the 3-mm dose-equivalent (Hp(3)) to the lens of the eye for medical staff (n = 11; 6 intensive care physicians, 2 pediatricians, 3 radiological technologists) who assisted patients during CT scan for "diagnostic" purpose (n = 91) was measured. We evaluated the dose reduction efficiencies with radiation safety glasses and bag-valve-mask extension tube. We also estimated the protection efficiency with radiation protection curtain introduced in front of the staff's face via the phantom experiment. RESULTS: Without wearing radiation safety glasses, Hp(3) to the lens of the eye was greatest for intensive care physicians (0.49 mSv/procedure; allowing 40 procedures to be performed annually), followed by pediatricians (0.30 mSv/procedure; 66 procedures annually) and radiological technologists (0.28 mSv/procedure; 71 procedures annually). Use of each type of protective tools: radiation safety glasses (0.07-mm-Pb), bag-valve-mask extension tube (20 cm) and radiation protective curtain (0.25-mm-Pb), reduced Hp(3) to the lens of the eye by 51%, 31% and 61%, respectively. CONCLUSION: Intensive care physicians perform most assisted ventilations with the bag-valve-mask during "diagnostic" CT scans, and may exceed the equivalent dose limit for the lens of the eye if radiation safety glasses are not worn. If "multiple protective measures" are implemented, compliance with the equivalent dose limit for the lens of the eye should be achievable without placing significant burdens on physicians or medical institutions.

17.
Diagnostics (Basel) ; 11(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374876

RESUMEN

Understanding the maximum skin dose is important for avoiding tissue reactions in cerebral angiography. In this study, we devised a method for using digital imaging and communication in medicine-radiation dose structured report (DICOM-RDSR) data to accurately estimate the maximum skin dose from the total air kerma at the patient entrance reference point (Total Ka,r). Using a test data set (n = 50), we defined the mean ratio of the maximum skin dose obtained from measurements with radio-photoluminescence glass dosimeters (RPLGDs) to the Total Ka,r as the conversion factor, CFKa,constant, and compared the accuracy of the estimated maximum skin dose obtained from multiplying Total Ka,r by CFKa,constant (Estimation Model 1) with that of the estimated maximum skin dose obtained from multiplying Total Ka,r by the functional conversion factor CFKa,function (Estimation Model 2). Estimation Model 2, which uses the quadratic function for the ratio of the fluoroscopy Ka,r to the Total Ka,r (Ka,r ratio), provided an estimated maximum skin dose closer to that obtained from direct measurements with RPLGDs than compared with that determined using Estimation Model 1. The same results were obtained for the validation data set (n = 50). It was suggested the quadratic function for the Ka,r ratio provides a more accurate estimate of the maximum skin dose in real time.

18.
Artículo en Japonés | MEDLINE | ID: mdl-32074530

RESUMEN

Japanese Diagnostic Reference Levels (DRLs) were released as "Japan DRLs 2015" from Japan Network for Research and Information on Medical Exposure (J-RIME) in June 2015. In "Japan DRLs 2015", DRLs in angiography and interventional procedures are set at a fluoroscopic dose rate of 20 mGy/min at the interventional reference point using a phantom. In order to achieve optimization with DRLs, then it need to be revised regularly. Therefore, we (research group to examine the effect of Japan DRLs 2015 and the necessity of additional items in angiography and vascular interventions) examined the effects of "Japan DRLs 2015" on angiography and interventional procedures. And we also investigated for DRLs revision in the future. As a result, it turned out that it is important to create DRLs in medical procedures that can be effectively used in clinical settings.


Asunto(s)
Angiografía , Fantasmas de Imagen , Humanos , Japón , Dosis de Radiación , Valores de Referencia
19.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012663

RESUMEN

Biodosimetry is a useful method for estimating personal exposure doses to ionizing radiation. Studies have identified metabolites in non-cellular biofluids that can be used as markers in biodosimetry. Levels of metabolites in blood cells may reflect health status or environmental stresses differentially. Here, we report changes in the levels of murine blood cell metabolites following exposure to X-rays in vivo. Levels of blood cell metabolites were measured by capillary electrophoresis time-of-flight mass spectrometry. The levels of 100 metabolites were altered substantially following exposure. We identified 2-aminobutyric acid, 2'-deoxycytidine, and choline as potentially useful markers of radiation exposure and established a potential prediction panel of the exposure dose using stepwise regression. Levels of blood cell metabolites may be useful biomarkers in estimating exposure doses during unexpected radiation incidents.


Asunto(s)
Biomarcadores , Células Sanguíneas/metabolismo , Células Sanguíneas/efectos de la radiación , Electroforesis Capilar , Radiación Ionizante , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Dosis-Respuesta en la Radiación , Metaboloma , Metabolómica/métodos
20.
Radiat Prot Dosimetry ; 188(3): 389-396, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31922569

RESUMEN

The purpose of this study was to measure the peak skin dose (PSD) and bilateral lens doses using radiophotoluminescence glass dosimeters and to determine the factors influencing the radiation dose in cases of cerebral aneurysm treated with pipeline embolization devices (PEDs). The cumulative dose, PSD and right and left lens doses were 3818.1 ± 1604.6, 1880.0 ± 723.0, 124.8 ± 49.2 and 180.7 ± 124.8 mGy, respectively. Using multivariate analysis, body mass index (p < 0.01; odds ratio (OR) = 1.806; 95% confidence interval (CI) = 1.007-3.238) and deployment time of PED (p < 0.05; OR = 1.107; 95% CI = 1.001-1.224) were found to be the independent predictors of PSD exceeding 2 Gy. Measures such as collimation of the radiation field and optimization of radiation dose should be taken to reduce the radiation to the patient.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Angiografía Cerebral , Humanos , Aneurisma Intracraneal/terapia , Dosis de Radiación , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...