Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114577, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096490

RESUMEN

Growth and differentiation factor 15 (GDF15) has recently emerged as a weight loss and insulin-sensitizing factor. Growing evidence also supports a role for GDF15 as a physiological, exercise-induced stress signal. Here, we tested whether GDF15 is required for the insulin-sensitizing effects of exercise in mice and humans. At baseline, both under a standard nutritional state and high-fat feeding, GDF15 knockout (KO) mice display normal glucose tolerance, systemic insulin sensitivity, maximal speed, and endurance running capacity when compared to wild-type littermates independent of sex. When submitted to a 4-week exercise training program, both lean and obese wild-type and GDF15 KO mice similarly improve their endurance running capacity, glucose tolerance, systemic insulin sensitivity, and peripheral glucose uptake. Insulin-sensitizing effects of exercise training were also unrelated to changes in plasma GDF15 in humans. In summary, we here show that GDF15 is dispensable for the insulin-sensitizing effects of chronic exercise.

3.
Commun Biol ; 7(1): 346, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509307

RESUMEN

The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.


Asunto(s)
Caquexia , Insuficiencia Renal Crónica , Animales , Ratones , Caquexia/complicaciones , Caquexia/metabolismo , Estudios Transversales , Insuficiencia Renal Crónica/complicaciones , Pérdida de Peso , Composición Corporal/fisiología
4.
Int J Obes (Lond) ; 48(7): 973-980, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38491190

RESUMEN

BACKGROUND: The adiponectin is one of the rare adipokines down-regulated with obesity and protects against obesity-related disorders. Similarly, the apolipoprotein M (apoM) is expressed in adipocytes and its expression in adipose tissue is associated with metabolic health. We compared circulating apoM with adiponectin regarding their relationship with metabolic parameters and insulin sensitivity and examined their gene expression patterns in adipocytes and in the adipose tissue. METHODS: Circulating apoM and adiponectin were examined in 169 men with overweight in a cross-sectional study, and 13 patients with obesity during a surgery-induced slimming program. Correlations with clinical parameters including the insulin resistance index (HOMA-IR) were analyzed. Multiple regression analyses were performed on HOMA-IR. The APOM and ADIPOQ gene expression were measured in the adipose tissue from 267 individuals with obesity and a human adipocyte cell line. RESULTS: Participants with type 2 diabetes had lower circulating adiponectin and apoM, while apoM was higher in individuals with dyslipidemia. Similar to adiponectin, apoM showed negative associations with HOMA-IR and hs-CRP (r < -0.2), and positive correlations with HDL markers (HDL-C and apoA-I, r > 0.3). Unlike adiponectin, apoM was positively associated with LDL markers (LDL-C and apoB100, r < 0.20) and negatively correlated with insulin and age (r < -0.2). The apoM was the sole negative determinant of HOMA-IR in multiple regression models, while adiponectin not contributing significantly. After surgery, the change in HOMA-IR was negatively associated with the change in circulating apoM (r = -0.71), but not with the change in adiponectin. The APOM and ADIPOQ gene expression positively correlated in adipose tissue (r > 0.44) as well as in adipocytes (r > 0.81). In adipocytes, APOM was downregulated by inflammatory factors and upregulated by adiponectin. CONCLUSIONS: The apoM rises as a new partner of adiponectin regarding insulin sensitivity. At the adipose tissue level, the adiponectin may be supported by apoM to promote a healthy adipose tissue. TRIAL REGISTRATION: NCT01277068, registered 13 January 2011; NCT02332434, registered 5 January 2015; and NCT00390637, registered 20 October 2006.


Asunto(s)
Adiponectina , Apolipoproteínas M , Resistencia a la Insulina , Humanos , Masculino , Apolipoproteínas M/sangre , Resistencia a la Insulina/fisiología , Adiponectina/sangre , Estudios Transversales , Persona de Mediana Edad , Adulto , Obesidad/sangre , Obesidad/metabolismo , Femenino , Adipocitos/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Biomarcadores/sangre , Tejido Adiposo/metabolismo , Apolipoproteínas/sangre
5.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38238601

RESUMEN

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Glicerilfosforilcolina , Fosfolipasas , Anciano , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Redes y Vías Metabólicas , Músculo Esquelético/metabolismo , Fosfolipasas/metabolismo , Glicerilfosforilcolina/metabolismo
6.
J. physiol. biochem ; 70(2): 583-591, jun. 2014.
Artículo en Inglés | IBECS | ID: ibc-122977

RESUMEN

The aim of the present study was to investigate the influence of substrate availability on fuel selection during exercise. Eight endurance-trained male cyclists performed 90-min exercise at 70 % of their maximal oxygen uptake in a cross-over design, either in rested condition (CON) or the day after 2-h exercise practised at 70 % of maximal oxygen uptake (EX). Subjects were given a sucrose load (0.75 g kg−1 body weight) 45 min after the beginning of the 90-min exercise test. Lipolysis was measured in subcutaneous abdominal adipose tissue (SCAT) by microdialysis and substrate oxidation by indirect calorimetry. Lipid oxidation increased during exercise and tended to decrease during sucrose ingestion in both conditions. Lipid oxidation was higher during the whole experimental period in the EX group (p = 0.004). Interestingly, fuel selection, assessed by the change in respiratory exchange ratio (RER), was increased in the EX session (p = 0.002). This was paralleled by a higher rate of SCAT lipolysis reflected by dialysate glycerol, plasma glycerol, and fatty acids (FA) levels (p < 0.001). Of note, we observed a significant relationship between whole-body fat oxidation and dialysate glycerol in both sessions (r 2 = 0.33, p = 0.02). In conclusion, this study highlights the limiting role of lipolysis and plasma FA availability to whole-body fat oxidation during exercise in endurance-trained subjects. This study shows that adipose tissue lipolysis is a determinant of fuel selection during exercise in healthy subjects


Asunto(s)
Humanos , Lipólisis/fisiología , Metabolismo Energético/fisiología , Tejido Adiposo/metabolismo , Ejercicio Físico/fisiología , Biocombustibles , Metabolismo de los Lípidos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA