Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(4): 046401, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566843

RESUMEN

The recent observation of correlated phases in transition metal dichalcogenide moiré systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moiré superlattice effects in 57.4° twisted WSe_{2} (tWSe_{2}). Our data reveal a split-off flat band that derives from the monolayer Γ states. Using advanced data analysis, we directly quantify the moiré potential from our data. We further demonstrate that the global valence band maximum in tWSe_{2} is close in energy to this flat band but derives from the monolayer K states which show weaker superlattice effects. These results constrain theoretical models and open the perspective that Γ-valley flat bands might be involved in the correlated physics of twisted WSe_{2}.

2.
Nat Nanotechnol ; 14(5): 408-419, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31065072

RESUMEN

The family of two-dimensional (2D) materials grows day by day, hugely expanding the scope of possible phenomena to be explored in two dimensions, as well as the possible van der Waals (vdW) heterostructures that one can create. Such 2D materials currently cover a vast range of properties. Until recently, this family has been missing one crucial member: 2D magnets. The situation has changed over the past 2 years with the introduction of a variety of atomically thin magnetic crystals. Here we will discuss the difference between magnetic states in 2D materials and in bulk crystals and present an overview of the 2D magnets that have been explored recently. We will focus on the case of the two most studied systems-semiconducting CrI3 and metallic Fe3GeTe2-and illustrate the physical phenomena that have been observed. Special attention will be given to the range of new van der Waals heterostructures that became possible with the appearance of 2D magnets, offering new perspectives in this rapidly expanding field.

3.
Science ; 364(6444): 973-976, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023891

RESUMEN

The discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) crystals has generated widespread interest. Making further progress in this area requires quantitative knowledge of the magnetic properties of vdW magnets at the nanoscale. We used scanning single-spin magnetometry based on diamond nitrogen-vacancy centers to image the magnetization, localized defects, and magnetic domains of atomically thin crystals of the vdW magnet chromium(III) iodide (CrI3). We determined the magnetization of CrI3 monolayers to be ≈16 Bohr magnetons per square nanometer, with comparable values in samples with odd numbers of layers; however, the magnetization vanishes when the number of layers is even. We also found that structural modifications can induce switching between ferromagnetic and antiferromagnetic interlayer ordering. These results demonstrate the benefit of using single-spin scanning magnetometry to study the magnetism of 2D vdW magnets.

4.
Phys Rev Lett ; 118(25): 257203, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28696733

RESUMEN

We investigate manifestations of topological order in monoaxial helimagnet Cr_{1/3}NbS_{2} by performing transport measurements on ultrathin crystals. Upon sweeping the magnetic field perpendicularly to the helical axis, crystals thicker than one helix pitch (48 nm) but much thinner than the magnetic domain size (∼1 µm) are found to exhibit sharp and hysteretic resistance jumps. We show that these phenomena originate from transitions between topological sectors with a different number of magnetic solitons. This is confirmed by measurements on crystals thinner than 48 nm-in which the topological sector cannot change-that do not exhibit any jump or hysteresis. Our results show the ability to deterministically control the topological sector of finite-size Cr_{1/3}NbS_{2} and to detect intersector transitions by transport measurements.

5.
Phys Rev Lett ; 105(23): 236802, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21231492

RESUMEN

We report on a study of magnetotransport in LaAlO3 /SrTiO3 interfaces characterized by mobilities of the order of several thousands cm2/V s. We observe Shubnikov-de Haas oscillations whose period depends only on the perpendicular component of the magnetic field. This observation directly indicates the formation of a two-dimensional electron gas originating from quantum confinement at the interface. From the temperature dependence of the oscillation amplitude we extract an effective carrier mass m* ≃ 1.45 m(e). An electric field applied in the back-gate geometry increases the mobility, the carrier density, and the oscillation frequency.

6.
Phys Rev Lett ; 103(6): 066803, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19792595

RESUMEN

We investigate rubrene single-crystal field-effect transistors, whose stability and reproducibility are sufficient to measure systematically the shift in threshold voltage as a function of channel length and source-drain voltage. The shift is due to space charge transferred from the contacts and can be modeled quantitatively without free fitting parameters, using Poisson's equation, and by assuming that the density of states in rubrene is that of a conventional inorganic semiconductor. Our results demonstrate the consistency, at the quantitative level, of a variety of recent experiments on rubrene crystals and show how the use of field-effect transistor measurements can enable the determination of microscopic parameters (e.g., the effective mass of charge carriers).

7.
Nat Nanotechnol ; 4(6): 383-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19498401

RESUMEN

Graphene-based materials are promising candidates for nanoelectronic devices because very high carrier mobilities can be achieved without the use of sophisticated material preparation techniques. However, the carrier mobilities reported for single-layer and bilayer graphene are still less than those reported for graphite crystals at low temperatures, and the optimum number of graphene layers for any given application is currently unclear, because the charge transport properties of samples containing three or more graphene layers have not yet been investigated systematically. Here, we study charge transport through trilayer graphene as a function of carrier density, temperature, and perpendicular electric field. We find that trilayer graphene is a semimetal with a resistivity that decreases with increasing electric field, a behaviour that is markedly different from that of single-layer and bilayer graphene. We show that the phenomenon originates from an overlap between the conduction and valence bands that can be controlled by an electric field, a property that had never previously been observed in any other semimetal. We also determine the effective mass of the charge carriers, and show that it accounts for a large part of the variation in the carrier mobility as the number of layers in the sample is varied.

8.
Phys Rev Lett ; 100(19): 196802, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18518472

RESUMEN

We have investigated shot noise in graphene field effect devices in the temperature range of 4.2-30 K at low frequency (f=600-850 MHz). We find that for our graphene samples with a large width over length ratio W/L, the Fano factor F reaches a maximum F ~ 1/3 at the Dirac point and that it decreases strongly with increasing charge density. For smaller W/L, the Fano factor at Dirac point is significantly lower. Our results are in good agreement with the theory describing that transport at the Dirac point in clean graphene arises from evanescent electronic states.

9.
Phys Rev Lett ; 100(3): 036804, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18233021

RESUMEN

We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by electrostatic lateral confinement. These states appear on the domain walls separating insulating regions experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero modes, their properties are defined by the unusual chiral BLG quasiparticles, from which they derive. The number of zero mode branches is fixed by the topological vacuum charge of the insulating BLG state. We discuss how these chiral states can manifest experimentally and emphasize their relevance for valleytronics.

10.
Phys Rev Lett ; 99(8): 086601, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17930967

RESUMEN

We analyze theoretically adiabatic quantum pumping through a normal conductor that couples the normal regions of two superconductor - normal-metal - superconductor Josephson junctions. By using the phases of the superconducting order parameter in the superconducting contacts as pumping parameters, we demonstrate that a nonzero pumped charge can flow through the device. The device exploits the evolution of the superconducting phases due to the ac Josephson effect, and can therefore be operated at very high frequency, resulting in a pumped current as large as a few nanoamperes. The experimental relevance of our calculations is discussed.


Asunto(s)
Metales
11.
Phys Rev Lett ; 97(19): 196804, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17155651

RESUMEN

We discuss the effect of certain types of static disorder, like that induced by curvature or topological defects, on the quantum correction to the conductivity in graphene. We find that when the intervalley scattering time is long or comparable to tau(phi), these defects can induce an effective time-reversal symmetry breaking of the Hamiltonian associated to each one of the two valleys in graphene. The phenomenon suppresses the magnitude of the quantum correction to the conductivity and may result in the complete absence of a low-field magnetoresistance, as recently found experimentally. Our work shows that a quantitative description of weak localization in graphene must include the analysis of new regimes, not present in conventional two-dimensional electron gases.

12.
Nat Mater ; 5(12): 982-6, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17086169

RESUMEN

In organic field-effect transistors (FETs), charges move near the surface of an organic semiconductor, at the interface with a dielectric. In the past, the nature of the microscopic motion of charge carriers--which determines the device performance--has been related to the quality of the organic semiconductor. Recently, it was discovered that the nearby dielectric also has an unexpectedly strong influence. The mechanisms responsible for this influence are not understood. To investigate these mechanisms, we have studied transport through organic single-crystal FETs with different gate insulators. We find that the temperature dependence of the mobility evolves from metallic-like to insulating-like with increasing dielectric constant of the insulator. The phenomenon is accounted for by a two-dimensional Fröhlich polaron model that quantitatively describes our observations and shows that increasing the dielectric polarizability results in a crossover from the weak to the strong polaronic coupling regime. This represents a considerable step forward in our understanding of transport through organic transistors, and identifies a microscopic physical process with a large influence on device performance.

13.
Phys Rev Lett ; 95(2): 026801, 2005 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-16090708

RESUMEN

We discuss magnetotransport measurements on individual single-wall carbon nanotubes (SWNTs) with low contact resistance, performed as a function of temperature and gate voltage. We find that the application of a magnetic field perpendicular to the tube axis results in a large magnetoconductance of the order of e2/h at low temperature. We demonstrate that this magnetoconductance consists of a sample-specific and of an ensemble-averaged contribution, both of which decrease with increasing temperature. The observed behavior resembles very closely the behavior of more conventional multichannel mesoscopic wires, exhibiting universal conductance fluctuations and weak localization. A theoretical analysis of our experiments will enable us to reach a deeper understanding of phase-coherent one-dimensional electronic motion in SWNTs.

14.
Phys Rev Lett ; 95(2): 027002, 2005 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-16090710

RESUMEN

We investigate transport through hybrid structures consisting of two normal metal leads connected via tunnel barriers to one common superconducting electrode. We find clear evidence for the occurrence of nonlocal Andreev reflection and elastic cotunneling through a superconductor when the separation of the tunnel barrier is comparable to the superconducting coherence length. The probability of the two processes is energy dependent, with elastic cotunneling dominating at low energy and nonlocal Andreev reflection at higher energies. The energy scale of the crossover is found to be the Thouless energy of the superconductor, which indicates the phase coherence of the processes. Our results are relevant for the realization of recently proposed entangler devices.

15.
Phys Rev Lett ; 94(18): 186805, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15904395

RESUMEN

We have experimentally studied the spin-induced time reversal symmetry (TRS) breaking as a function of the relative strength of the Zeeman energy (E(Z)) and the Rashba spin-orbit interaction energy (E(SOI)), in InGaAs-based 2D electron gases. We find that the TRS breaking, and hence the associated dephasing time tau(phi)(B), saturates when E(Z) becomes comparable to E(SOI). Moreover, we show that the spin-induced TRS breaking mechanism is a universal function of the ratio E(Z)/E(SOI), within the experimental accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...