Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Saudi Pharm J ; 32(1): 101887, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38090734

RESUMEN

Traditional medicinal plants have played a promising role in the human health system. In folklore medicine, Crotalaria quinquefolia L. is used to treat fever, pain, eczema, impetigo, lung infections, scabies. The present investigation was executed to identify secondary metabolites responsible for anti-diabetic potential of C. quinquefolia L. leaf extract along with their possible mechanistic pathways. The anti-hyperglycemic activity was assessed by in vitro α-amylase and α-glucosidase inhibitory assays and an in vivo oral glucose tolerance test and diabetogenic effect of streptozotocin in mice, followed by an integrative computational analysis. A total of 23 compounds were identified through GCMS and HPLC. The extract showed potent in-vitro α-amylase and α-glucosidase suppressive activity with IC50 values of 12.8 ± 0.1 µg/mL and 36.3 ± 0.07 µg/mL, respectively. In an in vivo oral glucose tolerance test, the extract (400 mg/kg body weight) prompted blood glucose levels to plummet by 18.9 % after 30 min, compared to the normal control and streptozotocin induced diabetes test, maximum glucose reduction was observed 11.67 % by dose of 200 mg/kg compared to the control; glibenclamide and extract (400 mg/kg) reduced blood glucose levels by 1.3 % and 16.7 %, respectively, compared to diabetic control at the end of the trial. Additionally, among the identified compounds, myricetin, quercetin, rutin, and kaempferol revealed good binding affinity as well as stability with the studied anti-diabetic proteins in docking and molecular dynamics simulation studies. Furthermore, QSAR analysis and network pharmacology studies of the identified compounds divulged enhanced insulin secretion stimulation, insulin receptor kinase activity, PPARγ expression; enzyme inhibition (α-glucosidase, α-amylase) and protection of the pancreas -mediated antidiabetic effects. Besides, they proved strong inhibitory potential against the studied antidiabetic proteins in other computational analysis. Based on the present findings, it can be affirmed that C. quinquefolia extract possesses anti-diabetic activity.

2.
Brain Res ; 1785: 147889, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35339428

RESUMEN

Knowledge of heterogeneous etiology and pathophysiology of schizophrenia (SZP) is reasonably inadequate and non-deterministic due to its inherent complexity and underlying vast dynamics related to genetic mechanisms. The evolution of large-scale transcriptome-wide datasets and subsequent development of relevant, robust technologies for their analyses show promises toward elucidating the genetic basis of disease pathogenesis, its early risk prediction, and predicting drug molecule targets for therapeutic intervention. In this research, we have scrutinized the genetic basis of SZP through functional annotation and network-based system biology approaches. We have determined 96 overlapping differentially expressed genes (DEGs) from 2 microarray datasets and subsequently identified their interconnecting networks to reveal transcriptome signatures like hub proteins (FYN, RAD51, SOCS3, XIAP, AKAP13, PIK3C2A, CBX5, GATA3, EIF3K, and CDKN2B), transcription factors and miRNAs. In addition, we have employed gene set enrichment to highlight significant gene ontology (e.g., positive regulation of microglial cell activation) and relevant pathways (such as axon guidance and focal adhesion) interconnected to the genes associated with SZP. Finally, we have suggested candidate drug substances like Luteolin HL60 UP as a possible therapeutic target based on these key molecular signatures.


Asunto(s)
Biología Computacional , Esquizofrenia , Biomarcadores , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes/genética , Humanos , Mapas de Interacción de Proteínas , Esquizofrenia/genética , Transcriptoma
3.
Cytokine ; 136: 155228, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32822911

RESUMEN

The COVID-19 pandemic has led to twin public health and economic crises around the world. Not only has it cost hundreds of thousands of lives but also severely impacted livelihoods and placed enormous strain on community healthcare and welfare services. In this review, we explore the events associated with SARS-CoV-2 pathogenesis and host immunopathological reactivity due to the clinical manifestations of this coronavirus infection. We discuss that the metallopeptidase enzyme ADAM17, also known as tumor necrosis factor-α-converting enzyme, TACE, is responsible for shedding of angiotensin-converting enzyme 2 and membrane-bound interleukin (IL)-6 receptor. This leads to elevated pro-inflammatory responses that result in cytokine storm syndrome. We argue that cytokine balance may be restored by recovering an IL-6 trans-signaling neutralizing buffer system through the mediation of recombinant soluble glycoprotein 130 and recombinant ADAM17/TACE prodomain inhibitor. This cytokine restoration, possibly combined with inhibition of SARS-CoV-2 entry as well as replication and coagulopathy, could be introduced as a novel approach to treat patients with severe COVID-19. In cases of co-morbidity, therapies related to the management of associated disease conditions could ameliorate those clinical manifestations.


Asunto(s)
Betacoronavirus/crecimiento & desarrollo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Citocinas/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , COVID-19 , Infecciones por Coronavirus/complicaciones , Quimioterapia Combinada , Humanos , Modelos Biológicos , Pandemias , Neumonía Viral/complicaciones , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA