Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
PLoS One ; 17(6): e0269749, 2022.
Article En | MEDLINE | ID: mdl-35709087

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disease caused by uncontrolled complement activation; effective and approved treatments include terminal complement inhibition. This study assessed whether combination cemdisiran (an investigational N-acetylgalactosamine-conjugated RNAi therapeutic that suppresses liver production of complement component C5) and pozelimab (an investigational fully human monoclonal antibody against C5) results in more effective and durable complement activity inhibition than the individual agents alone in non-human primates. Cynomolgus monkeys received a single subcutaneous injection of cemdisiran (5 or 25 mg/kg), pozelimab (5 or 10 mg/kg), or combination cemdisiran and pozelimab (5+5 mg/kg, 5+10 mg/kg, or 25+10 mg/kg, respectively). When given in combination, pozelimab was administered 2 weeks after cemdisiran dosing. Pharmacokinetics and ex vivo pharmacodynamic properties were assessed. The half-life of pozelimab alone was 12.9-13.3 days; this increased to 19.6-21.1 days for pozelimab administered in combination with cemdisiran. In ex vivo classical pathway hemolysis assays (CH50), pozelimab + cemdisiran combinations achieved durable and more complete suppression of complement activity (8-13 weeks) vs monotherapy of either agent. Cemdisiran monotherapy demonstrated dose-dependent suppression of total C5 concentrations, with the higher dose (25 mg/kg) achieving >90% maximum suppression. Total C5 concentrations after administration of pozelimab + cemdisiran combinations were similar compared with administration of cemdisiran alone. The combination of pozelimab + cemdisiran mediates complement activity inhibition more efficiently than either pozelimab or cemdisiran administered alone. The pharmacokinetic/pharmacodynamic profile of combination pozelimab + cemdisiran in non-human primates appears suitable for further clinical investigation as a potential long-acting treatment for PNH and other complement-mediated diseases.


Hemoglobinuria, Paroxysmal , Animals , Antibodies, Monoclonal/therapeutic use , Complement Activation , Complement C5 , Hemoglobinuria, Paroxysmal/drug therapy , Hemolysis , Macaca fascicularis
2.
Mol Cell Biol ; 42(1): e0046721, 2022 01 20.
Article En | MEDLINE | ID: mdl-34723652

A subset of hospitalized COVID-19 patients, particularly the aged and those with comorbidities, develop the most severe form of the disease, characterized by acute respiratory disease syndrome (ARDS), coincident with experiencing a "cytokine storm." Here, we demonstrate that cytokines which activate the NF-κB pathway can induce activin A. Patients with elevated activin A, activin B, and FLRG at hospital admission were associated with the most severe outcomes of COVID-19, including the requirement for mechanical ventilation, and all-cause mortality. A prior study showed that activin A could decrease viral load, which indicated there might be a risk to giving COVID-19 patients an inhibitor of activin. To evaluate this, the role for activin A was examined in a hamster model of SARS-CoV-2 infection, via blockade of activin A signaling. The hamster model demonstrated that use of an anti-activin A antibody did not worsen the disease and there was no evidence for increase in lung viral load and pathology. The study indicates blockade of activin signaling may be beneficial in treating COVID-19 patients experiencing ARDS.


Activins/blood , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Follistatin-Related Proteins/blood , SARS-CoV-2/drug effects , Adult , Aged , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19/mortality , COVID-19/virology , Cell Line , Cells, Cultured , Cricetinae , Double-Blind Method , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , SARS-CoV-2/physiology , Severity of Illness Index , Signal Transduction/drug effects , Survival Rate
3.
J Am Soc Nephrol ; 32(1): 99-114, 2021 01.
Article En | MEDLINE | ID: mdl-33288630

BACKGROUND: C3 glomerulopathy (C3G) is characterized by the alternative-pathway (AP) hyperactivation induced by nephritic factors or complement gene mutations. Mice deficient in complement factor H (CFH) are a classic C3G model, with kidney disease that requires several months to progress to renal failure. Novel C3G models can further contribute to understanding the mechanism behind this disease and developing therapeutic approaches. METHODS: A novel, rapidly progressing, severe, murine model of C3G was developed by replacing the mouse C3 gene with the human C3 homolog using VelociGene technology. Functional, histologic, molecular, and pharmacologic assays characterize the presentation of renal disease and enable useful pharmacologic interventions in the humanized C3 (C3hu/hu) mice. RESULTS: The C3hu/hu mice exhibit increased morbidity early in life and die by about 5-6 months of age. The C3hu/hu mice display elevated biomarkers of kidney dysfunction, glomerulosclerosis, C3/C5b-9 deposition, and reduced circulating C3 compared with wild-type mice. Administration of a C5-blocking mAb improved survival rate and offered functional and histopathologic benefits. Blockade of AP activation by anti-C3b or CFB mAbs also extended survival and preserved kidney function. CONCLUSIONS: The C3hu/hu mice are a useful model for C3G because they share many pathologic features consistent with the human disease. The C3G phenotype in C3hu/hu mice may originate from a dysregulated interaction of human C3 protein with multiple mouse complement proteins, leading to unregulated C3 activation via AP. The accelerated disease course in C3hu/hu mice may further enable preclinical studies to assess and validate new therapeutics for C3G.


Complement C3/genetics , Disease Models, Animal , Glomerulonephritis, Membranoproliferative/genetics , Kidney Diseases/genetics , Animals , Complement C3/metabolism , Complement Pathway, Alternative/genetics , Exons , Gene Expression Regulation , Glomerulonephritis, Membranoproliferative/metabolism , Humans , Kidney Diseases/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Phenotype , Polymorphism, Single Nucleotide , Renal Insufficiency/genetics , Renal Insufficiency/metabolism
...