Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sensors (Basel) ; 23(24)2023 Dec 10.
Article En | MEDLINE | ID: mdl-38139582

Respiratory rate monitoring is fundamental in clinical settings, and the accuracy of measurement methods is critical. This study aimed to develop and validate methods for assessing respiratory rate and the duration leof respiratory cycle phases in different body positions using optoelectronic plethysmography (OEP) based on a motion capture video system. Two analysis methods, the summation method and the triangle method were developed. The study focused on determining the optimal number of markers while achieving accuracy in respiratory parameter measurements. The results showed that most analysis methods showed a difference of ≤0.5 breaths per minute, with R2 ≥ 0.94 (p < 0.001) compared to spirometry. The best OEP methods for respiratory rate were the abdominal triangles and the sum of abdominal markers in all body positions. The study explored inspiratory and expiratory durations. The research found that 5-9 markers were sufficient to accurately determine respiratory time components in all body positions, reducing the marker requirements compared to previous studies. This interchangeability of OEP methods with standard spirometry demonstrates the potential of non-invasive methods for the simultaneous assessment of body segment movements, center of pressure dynamics, and respiratory movements. Future research is required to improve the clinical applicability of these methods.


Motion Capture , Respiratory Rate , Respiration , Plethysmography/methods , Spirometry
2.
Life (Basel) ; 13(9)2023 Sep 14.
Article En | MEDLINE | ID: mdl-37763312

Transcutaneous electrical stimulation of the spinal cord is used to restore locomotion and body weight support in patients with severe motor disorders. We studied the effects of this non-invasive stimulation on postural control in healthy subjects. Stimulation at the L1-L2 vertebrae was performed to activate the extensor muscles of the lower limbs. Because postural regulation depends on the cognitive style, the effects of the stimulation were analyzed separately in field-dependent (FD) and field-independent (FI) participants. During the study, FD and FI participants (N = 16, 25 ± 5 years, all right dominant leg) stood on a force platform in a soundproof chamber with their eyes closed. Stimulation was applied in the midline between the L1 and L2 vertebrae or over the left or right dorsal roots of the spinal cord; under the control condition, there was no stimulation. Stimulation destabilized posture in healthy subjects, whereas patients with movement disorders usually showed an improvement in postural control. In the FD participants, left dorsal root and midline stimulation increased several postural parameters by up to 30%. Dorsal root stimulation on the side of the supporting leg reduced postural control, while stimulation on the side of the dominant leg did not. No significant changes were observed in the FI participants.

3.
Life (Basel) ; 13(7)2023 Jul 14.
Article En | MEDLINE | ID: mdl-37511940

BACKGROUND: A growing number of studies have reported Coronavirus disease (COVID-19) related to both respiratory and central nervous system dysfunctions. This study evaluates the neuromodulatory effects of spinal cord transcutaneous stimulation (scTS) on the respiratory functional state in healthy controls and patients with post-COVID-19 respiratory deficits as a step toward the development of a rehabilitation strategy for these patients. METHODS: In this before-after, interventional, case-controlled clinical study, ten individuals with post-acute COVID-19 respiratory deficits and eight healthy controls received a single twenty-minute-long session of modulated monophasic scTS delivered over the T5 and T10 spinal cord segments. Forced vital capacity (FVC), peak forced inspiratory flow (PIF), peak expiratory flow (PEF), time-to-peak of inspiratory flow (tPIF), and time-to-peak of expiratory flow (tPEF), as indirect measures of spinal motor network activity, were assessed before and after the intervention. RESULTS: In the COVID-19 group, the scTS intervention led to significantly increased PIF (p = 0.040) and PEF (p = 0.049) in association with significantly decreased tPIF (p = 0.035) and tPEF (p = 0.013). In the control group, the exposure to scTS also resulted in significantly increased PIF (p = 0.010) and significantly decreased tPIF (p = 0.031). Unlike the results in the COVID-19 group, the control group had significantly decreased PEF (p = 0.028) associated with significantly increased tPEF (p = 0.036). There were no changes for FVC after scTS in both groups (p = 0.67 and p = 0.503). CONCLUSIONS: In post-COVID-19 patients, scTS facilitates excitation of both inspiratory and expiratory spinal neural networks leading to an immediate improvement of respiratory functional performance. This neuromodulation approach could be utilized in rehabilitation programs for patients with COVID-19 respiratory deficits.

4.
Life (Basel) ; 13(2)2023 Feb 05.
Article En | MEDLINE | ID: mdl-36836806

Spinal muscular atrophy (SMA) is characterized by the degeneration of spinal alpha motorneurons. Nusinersen demonstrated good efficacy in the early disease phases. The feasibility of transcutaneous spinal cord stimulation (tSCS) in motor rehabilitation of patients with spinal cord injury has been demonstrated. We hypothesize that tSCS may activate intact and restored by nusinersen motorneurons and slow down the decline in motor activity, and may contribute to the development of motor skills in children with SMA. A case series is presented. Five children (6-13 years old) with SMA type II or III participated in the study. They were treated with nusinersen for ~2 years. Application of tSCS was carried out during physical therapy for 30-40 min per day in the course of 10-14 days. Outcome measures were goniometry of joints with contracture, forced vital capacity (FVC), RULM and HFMSE scales. The participants tolerated the stimulation well. The reduction of the contracture was ≥5 deg. RULM and HFMSE increased by ~1-2 points. Predicted FVC increased by 1-7% in three participants. Each participant expanded their range of active movements and/or learned new motor skills. Spinal cord stimulation may be an effective rehabilitation method in patients treated with nusinersen. More research is needed.

5.
Life (Basel) ; 13(1)2022 Dec 22.
Article En | MEDLINE | ID: mdl-36675975

Orthostatic hypotension is a complex medical problem with various underlying pathogenic mechanisms and limited modalities for its correction. Since transcutaneous spinal cord stimulation (t-SCS) leads to immediate blood pressure (BP) elevation in a supine position, we suggested that t-SCS may attenuate blood pressure drops in orthostasis. We aimed to evaluate the hemodynamic effects of t-SCS during tilt testing in a feasibility study in three patients with documented orthostatic hypotension. Four sessions on two different days of tilt testing on and off t-SCS were performed on each patient. While tilting with t-SCS off showed typical significant BP drops in every patient, active t-SCS resulted in systemic vascular resistance (SVR) elevation in all patients and significantly higher values of systolic and diastolic BP in two patients. T-SCS requires further investigation on a larger patient population. However, our preliminary results demonstrate its ability for SVR and BP elevation in subjects with severe orthostatic hypotension.

6.
J Cardiovasc Transl Res ; 13(6): 891-893, 2020 12.
Article En | MEDLINE | ID: mdl-32378161

We aimed to determine if non-invasive electrical spinal cord stimulation (NIE-SCS) is associated with acute changes in systemic and pulmonary hemodynamics and cardiac electrophysiology at rest. Nine subjects without structural heart disease referred for catheter ablation of cardiac arrhythmia were included. NIE-SCS was performed in each patient at vertebral levels T1, T7, and T11. Higher systolic BP (BPs) was detected during T1 NIE-SCS as compared with baseline (147.9 ± 22.5 vs 135.4 ± 17.4 mmHg; P = 0.02). Atrioventricular nodal effective refractory period (AVN ERP) was shorter during stimulation at T1 and T7, when compared with baseline values (baseline 303.3 ± 15.0 vs 272.0 ± 19.2 for T1 vs 278.0 ± 8.3 ms for T7; P < 0.05). NIE-SCS at the T1 level is associated with an elevation of BPs. NIE-SCS at the T1 and T7 levels shortens AVN ERP. Further studies are needed for the evaluation of chronic effects.


Action Potentials , Atrioventricular Node/innervation , Autonomic Nervous System/physiopathology , Blood Pressure , Cardiovascular System/innervation , Spinal Cord Stimulation , Aged , Female , Humans , Male , Middle Aged , Pilot Projects , Refractory Period, Electrophysiological , Thoracic Vertebrae , Time Factors
8.
Front Physiol ; 9: 1196, 2018.
Article En | MEDLINE | ID: mdl-30283341

Neuronal control of stepping movement in healthy human is based on integration between brain, spinal neuronal networks, and sensory signals. It is generally recognized that there are continuously occurring adjustments in the physiological states of supraspinal centers during all routines movements. For example, visual as well as all other sources of information regarding the subject's environment. These multimodal inputs to the brain normally play an important role in providing a feedforward source of control. We propose that the brain routinely uses these continuously updated assessments of the environment to provide additional feedforward messages to the spinal networks, which provides a synergistic feedforwardness for the brain and spinal cord. We tested this hypothesis in 8 non-injured individuals placed in gravity neutral position with the lower limbs extended beyond the edge of the table, but supported vertically, to facilitate rhythmic stepping. The experiment was performed while visualizing on the monitor a stick figure mimicking bilateral stepping or being motionless. Non-invasive electrical stimulation was used to neuromodulate a wide range of excitabilities of the lumbosacral spinal segments that would trigger rhythmic stepping movements. We observed that at the same intensity level of transcutaneous electrical spinal cord stimulation (tSCS), the presence or absence of visualizing a stepping-like movement of a stick figure immediately initiated or terminated the tSCS-induced rhythmic stepping motion, respectively. We also demonstrated that during both voluntary and imagined stepping, the motor potentials in leg muscles were facilitated when evoked cortically, using transcranial magnetic stimulation (TMS), and inhibited when evoked spinally, using tSCS. These data suggest that the ongoing assessment of the environment within the supraspinal centers that play a role in planning a movement can routinely modulate the physiological state of spinal networks that further facilitates a synergistic neuromodulation of the brain and spinal cord in preparing for movements.

9.
J Neurophysiol ; 116(1): 98-105, 2016 07 01.
Article En | MEDLINE | ID: mdl-27075538

We reported previously that both transcutaneous electrical spinal cord stimulation and direct pressure stimulation of the plantar surfaces of the feet can elicit rhythmic involuntary step-like movements in noninjured subjects with their legs in a gravity-neutral apparatus. The present experiments investigated the convergence of spinal and plantar pressure stimulation and voluntary effort in the activation of locomotor movements in uninjured subjects under full body weight support in a vertical position. For all conditions, leg movements were analyzed using electromyographic (EMG) recordings and optical motion capture of joint kinematics. Spinal cord stimulation elicited rhythmic hip and knee flexion movements accompanied by EMG bursting activity in the hamstrings of 6/6 subjects. Similarly, plantar stimulation induced bursting EMG activity in the ankle flexor and extensor muscles in 5/6 subjects. Moreover, the combination of spinal and plantar stimulation exhibited a synergistic effect in all six subjects, eliciting greater motor responses than either modality alone. While the motor responses to spinal vs. plantar stimulation seems to activate distinct but overlapping spinal neural networks, when engaged simultaneously, the stepping responses were functionally complementary. As observed during induced (involuntary) stepping, the most significant modulation of voluntary stepping occurred in response to the combination of spinal and plantar stimulation. In light of the known automaticity and plasticity of spinal networks in absence of supraspinal input, these findings support the hypothesis that spinal and plantar stimulation may be effective tools for enhancing the recovery of motor control in individuals with neurological injuries and disorders.


Leg/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Sensation/physiology , Spinal Cord/physiology , Adult , Biomechanical Phenomena , Electromyography , Humans , Male , Middle Aged , Motor Activity/physiology , Optical Imaging , Physical Stimulation , Pressure , Transcutaneous Electric Nerve Stimulation , Volition , Young Adult
10.
Neurosci Lett ; 609: 229-34, 2015 Nov 16.
Article En | MEDLINE | ID: mdl-26453766

It was demonstrated previously that transcutaneous electrical stimulation of multiple sites over the spinal cord is more effective in inducing robust locomotor behavior as compared to the stimulation of single sites alone in both animal and human models. To explore the effects and mechanisms of interactions during multi-site spinal cord stimulation we delivered transcutaneous electrical stimulation to the single or dual locations over the spinal cord corresponding to approximately L2 and S1 segments. Spinally evoked motor potentials in the leg muscles were investigated using single and paired pulses of 1ms duration with conditioning-test intervals (CTIs) of 5 and 50ms. We observed considerable post-stimulation modulatory effects which depended on CTIs, as well as on whether the paired stimuli were delivered at a single or dual locations, the rostro-caudal relation between the conditioning and test stimuli, and on the muscle studied. At CTI-5, the paired stimulation delivered at single locations (L2 or S1) provided strong inhibitory effects, evidenced by the attenuation of the compound responses as compared with responses from either single site. In contrast, during L2-S1 paradigm, the compound responses were potentiated. At CTI-50, the magnitude of inhibition did not differ among paired stimulation paradigms. Our results suggest that electrical stimuli delivered to dual sites over the lumbosacral enlargement in rostral-to-caudal order, may recruit different populations of motor neurons initially through projecting sensory and intraspinal connections and then directly, resulting in potentiation of the compound spinally evoked motor potentials. The interactive and synergistic effects indicate multi-segmental convergence of descending and ascending influences on the neuronal circuitries during electrical spinal cord stimulation.


Spinal Cord/physiology , Transcutaneous Electric Nerve Stimulation , Adult , Evoked Potentials, Motor , Female , Humans , Lumbosacral Region , Male , Motor Neurons/physiology
11.
Ann Phys Rehabil Med ; 58(4): 225-231, 2015 Sep.
Article En | MEDLINE | ID: mdl-26205686

Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a "stepping" movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI.


Central Pattern Generators/physiology , Spinal Cord/physiology , Transcutaneous Electric Nerve Stimulation/methods , Coccyx , Electrodes , Evoked Potentials, Motor , Exoskeleton Device , Humans , Spinal Cord Injuries/rehabilitation , Thoracic Vertebrae , Transcutaneous Electric Nerve Stimulation/instrumentation , Walking/physiology
12.
J Neurophysiol ; 113(3): 834-42, 2015 Feb 01.
Article En | MEDLINE | ID: mdl-25376784

The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord injury.


Spinal Cord/physiology , Walking , Biomechanical Phenomena , Extremities/innervation , Extremities/physiology , Humans , Male , Postural Balance , Transcutaneous Electric Nerve Stimulation , Young Adult
13.
J Neurosci ; 29(17): 5681-9, 2009 Apr 29.
Article En | MEDLINE | ID: mdl-19403834

The neurotransmitter systems mediating spinal locomotion in response to epidural spinal cord stimulation (ES) have not been identified. Here, we examine the role of the serotonergic system in regulating locomotor behavior of decerebrated cats during ES at L4-L5. ES elicited coordinated, weight-bearing, hindlimb stepping with plantar foot placement on a moving treadmill belt. Ketanserin [a 5-hydroxytryptamine (serotonin) (5-HT)(2/7) receptor antagonist] depressed this locomotor activity: only weak rhythmic movements without plantar foot placement and depressed EMG activity were observed. Cyproheptadine, a nonselective 5-HT blocker, prevented facilitation of stepping by epidural stimulation. These data demonstrate an important role of the serotonergic system in facilitating locomotion in the presence of epidural stimulation. In the presence of ketanserin, passive movements of one forelimb in a step-like manner immediately induced stepping of both hindlimbs with EMG patterns similar to those observed with ES without ketanserin. Thus, a non-5-HT-dependent spinal circuitry projecting from the cervical to the lumbar region of the spinal cord can facilitate stepping. The specific neurotransmitters responsible for this forelimb-facilitated stepping of the hindlimbs are unknown. These data suggest that a 5-HT(2/7) receptor-dependent pathway that processes hindlimb locomotor-like proprioception to facilitate hindlimb stepping can be complemented with proprioceptive afferents from the forelimbs via a non-5-HT(2/7) receptor neurotransmitter system. Thus, different neurotransmitter receptor systems can be used to mediate the same type of sensory event, i.e., locomotor-like proprioception to facilitate the same motor task, i.e., hindlimb stepping.


Proprioception/physiology , Receptors, Serotonin/physiology , Serotonin/physiology , Spinal Cord/physiology , Weight-Bearing/physiology , Animals , Cats , Decerebrate State/physiopathology , Hindlimb/innervation , Hindlimb/physiology , Lumbar Vertebrae , Motor Activity/physiology , Neural Pathways/physiology , Walking/physiology
...