Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(10): 4643-4651, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38357860

RESUMEN

The reactions of oxide [(dpp-bian)Al(µ2-O)2Al(dpp-bian)] (1) (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with phenyl- or cyclohexylisocyanates result in the formation of carbonimidate derivatives [(dpp-bian)Al(µ-O)(µ-RNCO2)Al(dpp-bian)] (R = Ph, 2; Cy, 3). Addition of N,N'-dicyclohexylcarbodiimide to compound 1 leads to the formation of ureate complex [(dpp-bian)Al(µ-O)(µ-(CyN)2CO)Al(dpp-bian)] (4). The reactions of the oxide 1 with pinacolborane and catecholborane afford oxo-bridged hydride [{(dpp-bian)Al(H)}(µ-O){Al(OBpin)(dpp-bian)}] (5) and compound [{(dpp-bian)Al(OBCat)}2(µ-O)] (7), respectively. Insertion of cyclohexylisocyanate into the Al-H bond of compound 5 gives CO insertion product [{(dpp-bian)Al(OC(H)NCy)}(µ-O){Al(OBpin)(dpp-bian)}] (6). New compounds have been characterized by ESR and IR spectroscopy; their molecular structures have been established by single-crystal X-ray analysis. The oxide 1 serves as a catalyst for the hydroboration of heteroallenes (isocyanates, carbodiimides) with pinacolborane.

2.
Inorg Chem ; 61(1): 206-213, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34949085

RESUMEN

The reactions of H2AlCl with [(dpp-Bian)Na(Et2O)n] and [(ArBIG-Bian)Na(THF)] produce respective aluminum hydrides supported by radical-anionic 1,2-bis(arylimino)acenaphthene ligands, [(dpp-Bian)AlH2] (1) and [(ArBIG-Bian)AlH2(THF)] (2) (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene); ArBIG-Bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene). The reaction of 1 with CO2 proceeds with reduction of both C═O bonds and results in diolate [{(dpp-Bian)Al(µ-O2CH2)}2] (3). Complex 2 reacts with CO2 to carbonate [{(ArBIG-Bian)Al(µ-OCH2OCO2)}2] (4) that is a result of the insertion of CO2 into the Al-O bond in diolate species formed initially. Aluminum monohydrides [(dpp-Bian)AlH(X)] (X = Cl, 5; Me, 6) react with CO2 to form respective alumoxanes [{(dpp-Bian)AlX}2(µ-O)] (X = Cl, 7 and X = Me, 8). Compounds 1-4, 7, and 8 have been characterized by ESR and IR spectroscopy, and their molecular structures have been determined by single-crystal X-ray analysis.

3.
Inorg Chem ; 56(21): 13401-13410, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29023115

RESUMEN

The reaction of Cl2GaH with a sodium salt of the dpp-Bian radical-anion (dpp-Bian•-)Na (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) affords paramagnetic gallane (dpp-Bian•-)Ga(Cl)H (1). Oxidation of (dpp-Bian2-)Ga-Ga(dpp-Bian2-) (2) with N2O results in the dimeric oxide (dpp-Bian•-)Ga(µ2-O)2Ga(dpp-Bian•-) (3). A treatment of the oxide 3 with phenylsilane affords paramagnetic gallium hydrides (dpp-Bian•-)GaH2 (4) and (dpp-Bian•-)Ga{OSi(Ph)H2}H (5) depending on the reagent's stoichiometry. The reaction of digallane 2 with benzaldehyde produces pinacolate (dpp-Bian•-)Ga(O2C2H2Ph2) (6). In the presence of PhSiH3, the reaction between digallane 2 and benzaldehyde (2: PhSiH3: PhC(H)O = 1:4:4) affords compound 4. The newly prepared complexes 1, 3-6 consist of a spin-labeled diimine ligand-dpp-Bian radical-anion. The presence of the ligand-localized unpaired electron allows the use of the ESR spectroscopy for characterization of the gallium hydrides reported. The molecular structures of compounds 1, 3-6 have been determined by the single-crystal X-ray analysis.

4.
Chemistry ; 18(36): 11264-76, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22847958

RESUMEN

The treatment of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with one equivalent of AlCl(3) and three equivalents of sodium in toluene at 110 °C produced a stable dialane, (dpp-bian)Al-Al(dpp-bian) (1). The reaction of compound 1 with pyridine gave Lewis-acid-base adduct (dpp-bian)(Py)Al-Al(Py)(dpp-bian) (2). Acetylene and phenylacetylene reacted with compound 1 to give cycloaddition products [dpp-bian(R(1)R(2))]Al-Al[(R(2)R(1))dpp-bian] (3: R(1)=R(2)=CH; 4: R(1)=CH, R(2)=CPh). These addition reactions occur across Al-N-C moieties and result in the formation of new C-C and C-Al bonds. At elevated temperatures, compound 4 rearranges into complex 5, which consists of a radical-anionic dpp-bian ligand and two bridging alken-1,2-diyl moieties, (dpp-bian)Al(HCCPh)(2)Al(dpp-bian). This transformation is accompanied by cleavage of the dpp-bian-ligand-alkyne C-C bond, as well as of the Al-Al bond. In contrast to its analogous gallium complex, compound 1 is reactive towards internal alkynes. In the reaction of compound 1 with PhC≡CMe, besides symmetrical addition product [dpp-bian(R(1)R(2))]Al-Al[(R(2)R(1))dpp-bian] (R(1)=CMe, R(2)=CPh; 6), monoadduct [dpp-bian(R(1)R(2))]Al-Al(dpp-bian) (R(1)=CMe, R(2)=CPh; 7) was also isolated. Complexes 1-7 were characterized by IR, (1)H NMR (1-4), and electronic absorption spectroscopy (3-5); the molecular structures of compounds 1-7 were determined by single-crystal X-ray diffraction.


Asunto(s)
Acenaftenos/química , Alquinos/química , Aluminio/química , Amidas/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxidación-Reducción , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA