Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Mucosal Immunol ; 17(2): 272-287, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382577

Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1ß) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.


Respiratory Syncytial Virus Infections , Humans , Animals , Mice , T-Lymphocytes , Interleukin-1alpha , Quality of Life , Lung , Interleukin-1 , Weight Loss , Mice, Inbred BALB C
2.
Microbiol Spectr ; 12(4): e0306723, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38411056

Prevention of respiratory syncytial virus (RSV) infection is now a global health priority, with a long-acting monoclonal antibody and two RSV vaccines recently licenced for clinical use. Most licenced and candidate interventions target the RSV fusion (RSV-F) protein. New interventions may be associated with the spread of mutations, reducing susceptibility to antibody neutralization in RSV-F. There is a need for ongoing longitudinal global surveillance of circulating RSV strains. To achieve this large-scale genomic surveillance, a reliable, high-throughput RSV sequencing assay is required. Here we report an improved high-throughput RSV whole-genome sequencing (WGS) assay performed directly on clinical samples without additional enrichment, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. Using upper respiratory tract (URT) RSV-positive clinical samples obtained from a sentinel network of primary care providers and from hospital patients (29.7% and 70.2%, respectively; n = 1,037), collected over the period 2019 to 2023, this assay had a threshold of approximately 4 × 103 to 8 × 103 copies/mL (RSV-B and RSV-A sub-types, respectively) as the lowest amount of virus needed in the sample to achieve >96% of whole-genome coverage at a high-quality level. Using a Ct value of 31 as an empirical cut-off, the overall assay success rate of obtaining >90% genome coverage at a read depth minimum of 20 was 96.83% for clinical specimens successfully sequenced from a total of 1,071. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national programs for the surveillance of RSV genomic variation. IMPORTANCE: In this paper, we report an improved high-throughput respiratory syncytial virus (RSV) whole-genome sequencing (WGS) assay performed directly on clinical samples, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national and global programs for the surveillance of RSV genomic variation. The quality of sequence produced is essential for preparedness for new interventions in monitoring antigenic escape, where a single point mutation might lead to a reduction in antibody binding effectiveness and neutralizing activity, or indeed in the monitoring of retaining susceptibility to neutralization by existing and new interventions.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/diagnosis , Antibodies, Monoclonal , High-Throughput Nucleotide Sequencing
3.
Mol Ther Nucleic Acids ; 34: 102045, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37876532

The response to mRNA vaccines needs to be sufficient for immune cell activation and recruitment, but moderate enough to ensure efficacious antigen expression. The choice of the cap structure and use of N1-methylpseudouridine (m1Ψ) instead of uridine, which have been shown to reduce RNA sensing by the cellular innate immune system, has led to improved efficacy of mRNA vaccine platforms. Understanding how RNA modifications influence the cell intrinsic immune response may help in the development of more effective mRNA vaccines. In the current study, we compared mRNA vaccines in mice against influenza virus using three different mRNA formats: uridine-containing mRNA (D1-uRNA), m1Ψ-modified mRNA (D1-modRNA), and D1-modRNA with a cap1 structure (cC1-modRNA). D1-uRNA vaccine induced a significantly different gene expression profile to the modified mRNA vaccines, with an up-regulation of Stat1 and RnaseL, and increased systemic inflammation. This result correlated with significantly reduced antigen-specific antibody responses and reduced protection against influenza virus infection compared with D1-modRNA and cC1-modRNA. Incorporation of m1Ψ alone without cap1 improved antibodies, but both modifications were required for the optimum response. Therefore, the incorporation of m1Ψ and cap1 alters protective immunity from mRNA vaccines by altering the innate immune response to the vaccine material.

...