Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065352

RESUMEN

This study presents the characterization of cross-linking parameters of a liquid crystalline epoxy monomer with an aromatic diamine as a curing agent. The mixture tested consisted of bis [4-(10,11-epoxyundecanoyloxy)benzoate] p-phenylene (LCEM) and 1,3-phenylenediamine (1,3-PDA). This paper focuses on the structural characterization of such systems using X-ray analysis. To investigate this, a comprehensive analysis was conducted using Differential Scanning Calorimetry (DSC) and Wide-Angle X-ray Scattering (WAXS). Through DSC analysis, the curing behavior and transition temperature of the liquid crystal epoxy system were established. To fully characterize the cross-linking of the system, a novel technique called DSC-TOPEM® was employed. The use of this technique enabled real-time monitoring of the curing process and provided precise information on the cross-linking energy, which resulted in the finding that the mixture was cross-linking faster than expected. WAXS analysis was performed to assess the structural changes formed during the cross-linking. The results of this analysis confirm that lower cross-linking temperatures of the mixture cause better ordering of mesogens than higher ones.

2.
Materials (Basel) ; 17(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063847

RESUMEN

This work focused on obtaining a low-temperature powder coating characterized by self-healing properties. To achieve this, acrylic resin, blocked polyisocyanates (bPICs) with 1,2,4-triazole, and unsaturated commercial resin were used. The synthesis of bPICs with triazole enabled the low-temperature curing and reversible Diels-Alder (DA) reaction at 160 °C. The chemical structure of bPICs was confirmed using 1H-NMR. The occurrence of the DA and retro-DA (rDA) reactions in the crosslinked polymer, at temperatures of 60-85 °C and 90-130 °C, respectively, was confirmed using Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and FT-IR spectroscopy. The self-healing properties of the powder coating were examined using polarized optical microscopy. Additionally, the occurrence of the DA and rDA reactions between triazole and unsaturated polyester resin was investigated through repeated self-healing tests.

3.
Polymers (Basel) ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794513

RESUMEN

A nonterminal liquid crystal epoxy monomer is used to create an epoxy-amine network with a typical diamine 4,4'diaminodiphenylmethane. The plain matrix is compared to matrices modified with inorganic fillers: TiO2 or SiO2. Conditions of the curing reaction and glass transition temperatures in the cured products are determined through differential scanning calorimetry and broadband dielectric spectroscopy. The curing process is also followed through optical and electrical observations. The dielectric response of all investigated networks reveals a segmental α-process related to structural reorientation (connected to the glass transition). In all products, a similar process associated with molecular motions of polar groups also appears. The matrix modified with TiO2 exhibits two secondary relaxation processes (ß and γ). Similar processes were observed in the pure monomer. An advantage of the network with the TiO2 filler is a shorter time or lower temperature required for optimal curing conditions. The physical properties of cured matrices depend on the presence of a nematic phase in the monomer and nonterminal functional groups in the aliphatic chains. In effect, such cured matrices can have more flexibility and internal order than classical resins. Additional modifiers used in this work shift the glass transition above room temperature and influence the fragility index in both cases.

4.
Polymers (Basel) ; 16(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543462

RESUMEN

Modern science and technology demand a low glass transition temperature, yet one tailored to specific thermoset needs and specific to individual hardener applications. Two novel, nonterminal liquid crystalline epoxy resins (LCER) were synthesised, with their structures characterized via nuclear magnetic resonance (NMR), mass spectrometry (MS), and elemental analysis. Their liquid crystalline nature and thermal properties were determined using polarized optical microscopy (POM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). A set of seven aromatic amines serving as curing agents was used to perform curing in fourteen different systems in order to assess the glass transition temperature (Tg) of the obtained polymer networks using DSC. The liquid crystalline elastomers were obtained with vitrification occurring in a low temperature range (-10-40 °C), with a more predictable outcome for amines with two aromatic rings in the structure than with one. Moreover, the resin with a core consisting of four aromatic rings produces networks with higher Tg than the three-aromatic resin. The use of nonterminal LCER allowed the lowering of the glass transition temperature of the polymers to more than 70 °C compared to a terminal analogue. This brings new possibilities of designing highly elastic yet cured polymers with potential for use in smart applications due to the LC nature of the resin.

5.
Molecules ; 29(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38474503

RESUMEN

A simple and efficient method for the synthesis of biodegradable, highly branched polycaprolactone (PCL) is presented. The solvent-free (bulk) reaction was carried out via ring opening polymerization (ROP), catalyzed by tin octanoate Sn(Oct)2, and it employed hyperbranched polyamide (HPPA) as a macro-initiator. The core-shell structure of the obtained products (PCL-HPPA), with the hyperbranched HPPA core and linear PCL chains as shell, was in the focus of the product characterization. 1H nuclear magnetic resonance (1H NMR) and elemental analysis confirmed the covalent incorporation of the HPPA in the products, as well as a high degree of grafting conversion of its amino functional groups. Confocal Raman Micro spectroscopy, and especially Time-of-Flight Secondary Ion Mass Spectrometry, further supported the existence of a core-shell structure in the products. Direct observation of macromolecules by means of cryogenic transmission electron microscopy, as well as gel permeation chromatography (GPC), suggested the existence of a minor 'aggregated' product fraction with multiple HPPA cores, which was attributed to transesterification reactions. Differential scanning calorimetry, as well as X-ray diffraction, demonstrated that the PCL-HPPA polymers displayed a similar degree of crystallinity to linear neat PCL, but that the branched products possessed smaller and less regular crystallites.

6.
Gels ; 8(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36286158

RESUMEN

Novel solvent-free ultra-extensible, tough, and self-healing nanocomposite elastomers were synthesized. The self-assembled materials were based on the copolymer matrix poly(methoxyethyl acrylate-co-sodium methacrylate) physically crosslinked by clay nano-platelets ('poly[MEA-co-SMA]/clay'). Depending on the content of SMA, the super-elastomers were predominantly hydrophobic, water-swelling, or fully water-soluble, and hence repeatedly processible. The SMA co-monomer introduces a tremendous increase in tensile strength, an increase in toughness, while ultra-extensibility is preserved. By tuning the contents of nano-clay and SMA co-monomer, a very wide range of product properties was achieved, including extreme ultra-extensibility, or high stiffness combined with more moderate super-extensibility, or very different values of tensile strength. There was very attractive, great improvement in autonomous self-healing ability induced by SMA, combined with tremendously enhanced self-recovery of internal mechanical damage: even complete self-recovery could be achieved. The ionic SMA repeat units were found to assemble to multiplets, which are phase-separated in the hydrophobic polyMEA matrix. The dynamics of SMA-units-hopping between these aggregates was of key importance for the mechanical, visco-elastic, tensile, and self-healing properties. The studied super-elastomers are attractive as advanced self-healing materials in engineering, soft robotics, and in medical or implant applications.

7.
Polymers (Basel) ; 13(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34883757

RESUMEN

Novel stiff, tough, highly transparent and ultra-extensible self-assembled nanocomposite elastomers based on poly(2-methoxyethylacrylate) (polyMEA) were synthesized. The materials are physically crosslinked by small in-situ-formed silica nanospheres, sized 3-5 nm, which proved to be a very efficient macro-crosslinker in the self-assembled network architecture. Very high values of yield stress (2.3 MPa), tensile strength (3.0 MPa), and modulus (typically 10 MPa), were achieved in combination with ultra-extensibility: the stiffest sample was breaking at 1610% of elongation. Related nanocomposites doubly filled with nano-silica and clay nano-platelets were also prepared, which displayed interesting synergy effects of the fillers at some compositions. All the nanocomposites exhibit 'plasto-elastic' tensile behaviour in the 'as prepared' state: they display considerable energy absorption (and also 'necking' like plastics), but at the same time a large but not complete (50%) retraction of deformation. However, after the first large tensile deformation, the materials irreversibly switch to 'real elastomeric' tensile behaviour (with some creep). The initial 'plasto-elastic' stretching thus causes an internal rearrangement. The studied materials, which additionally are valuable due to their high transparency, could be of application interest as advanced structural materials in soft robotics, in implant technology, or in regenerative medicine. The presented study focuses on structure-property relationships, and on their effects on physical properties, especially on the complex tensile, elastic and viscoelastic behaviour of the polyMEA nanocomposites.

8.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810397

RESUMEN

Theoretical studies of molecular structure and electric charge distribution were carried out for three epoxy compounds with different mesogenic cores. The compounds exhibit a nematic phase and form polymer networks that are potential bases for various composites. Results were compared to analogous materials with non-polar chains. A customized process involving geometry optimization of a series of conformations was employed to greatly increase likelihood of reaching global energy minimum for each molecule. All computations used Density Functional Theory (DFT) electron correlation model with the B3LYP hybrid functional. Molecular structure calculations yielded several parameters, including the magnitude and direction of the dipole moment, polarizability (α), first hyperpolarizability (ß), and highest-occupied/lowest-unoccupied molecular orbital (HOMO-LUMO) energies. These parameters can help predict electronic properties of the nematic phase and the polymer network and assess their predisposition for application in electrooptical devices. In particular, the magnitude and direction of the dipole moment determine molecular alignment of liquid crystal phases in electric field, which enables controlling molecular order also in cured networks. Theoretical results were supplemented with observations of the nematics and their behavior in electric field. It was demonstrated for the studied compounds that a change in aliphatic chain polarity helps preserve and reinforce perpendicular alignment of molecules induced by electric field.


Asunto(s)
Teoría Funcional de la Densidad , Electroquímica/métodos , Compuestos Epoxi/química , Cristales Líquidos/química , Simulación de Dinámica Molecular , Electrones , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Polímeros/química , Teoría Cuántica , Espectrometría Raman , Electricidad Estática
9.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260294

RESUMEN

Rheological and viscoelastic properties of physically crosslinked low-temperature elastomers were studied. The supramolecularly assembling copolymers consist of linear polydimethylsiloxane (PDMS) elastic chains terminated on both ends with mesogenic building blocks (LC) of azobenzene type. They are generally and also structurally highly different from the well-studied LC polymer networks or LC elastomers: The LC units make up only a small volume fraction in our materials and act as fairly efficient physical crosslinkers with thermotropic properties. The aggregation (nano-phase separation) of the relatively rare, small and spatially separated terminal LC units generates temperature-switched viscoelasticity in the molten copolymers. Their rheological behavior was found to be controlled by an interplay of nano-phase separation of the LC units (growth and splitting of their aggregates) and of the thermotropic transitions in these aggregates (which change their stiffness). As a consequence, multiple gel points (up to three) are observed in temperature scans of the copolymers. The physical crosslinks also can be reversibly disconnected by large mechanical strain in the 'warm' rubbery state, as well as in melt (thixotropy). The kinetics of crosslink formation was found to be fast if induced by temperature and extremely fast in case of internal self-healing after strain damage. Thixotropic loop tests hence display only very small hysteresis in the LC-melt-state, although the melts show very distinct shear thinning. Our study evaluates structure-property relationships in three homologous systems with elastic PDMS segments of different length (8.6, 16.3 and 64.4 repeat units). The studied copolymers might be of interest as passive smart materials, especially as temperature-controlled elastic/viscoelastic mechanical coupling.

10.
Polymers (Basel) ; 12(11)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113875

RESUMEN

Physically crosslinked low-temperature elastomers were prepared based on linear polydimethylsiloxane (PDMS) elastic chains terminated on both ends with mesogenic building blocks (LC) of azobenzene type. They are generally (and also structurally) highly different from the well-studied LC polymer networks (light-sensitive actuators). The LC units also make up only a small volume fraction in our materials and they do not generate elastic energy upon irradiation, but they act as physical crosslinkers with thermotropic properties. Our elastomers lack permanent chemical crosslinks-their structure is fully linear. The aggregation of the relatively rare, small, and spatially separated terminal LC units nevertheless proved to be a considerably strong crosslinking mechanism. The most attractive product displays a rubber plateau extending over 100 °C, melts near 8 °C, and is soluble in organic solvents. The self-assembly (via LC aggregation) of the copolymer molecules leads to a distinctly lamellar structure indicated by X-ray diffraction (XRD). This structure persists also in melt (polarized light microscopy, XRD), where 1-2 thermotropic transitions occur. The interesting effects of the properties of this lamellar structure on viscoelastic and rheological properties in the rubbery and in the melt state are discussed in a follow-up paper ("Part II"). The copolymers might be of interest as passive smart materials, especially as temperature-controlled elastic/viscoelastic mechanical coupling. Our study focuses on the comparison of physical properties and structure-property relationships in three systems with elastic PDMS segments of different length (8.6, 16.3, and 64.4 repeat units).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA