Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Heliyon ; 10(4): e26381, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38404847

Biological control of undesirable weeds associated with crop cultivation is a sustainable approach that can reduce chemical herbicide dependence. The current study aimed to assess the bio-herbicidal potential of the donor species Ononis vaginalis Vahl. on germination efficiency as well as various growth and physiological parameters of the recipient species Rumex dentatus L., a major broad bean pest (Vicia faba L.). To assess the greatest inhibitory allelopathic effect on the recipient species in mixed (Rumex dentatus L. and Vicia faba L.) and pure cultures (each one separately), two experiments were conducted under laboratory conditions. A Petri dish experiment using O. vaginalis shoot aqueous extract (5%, 10%, 20%, and 40%) and a pot experiment using O. vaginalis shoot crude powder (1%, 2%, 5%, and 10%) were conducted to investigate its biological activity on some growth and physiological parameters of both crop and weed species. O. vaginalis underwent a general phytochemical screening that revealed a high production of allelochemicals, which are secondary metabolites and may have a function like that of natural herbicides. The result showed that the germination of V. faba seeds in both pure and mixed cultures was not significantly affected by low levels of O. vaginalis shoot aqueous extract treatments in pure and mixed cultures, in contrast, those recorded for R. dentatus gradually dropped as levels of O. vaginalis increased in both cultures. Results recorded a significant increase in total phenolics of V. faba shoots and roots under different treatments, except at the high concentrations of crude powder at the donor species level (5 and10%). A reduction in the total phenolic and flavonoid fractions was observed in R. dentatus roots under varying concentration treatments. Conversely, under high concentration treatments, flavonoids decreased in the roots of the mixed culture of R. dentatus but increased in the shoots. In conclusion, allelopathy can be used to suppress weeds in field crops. The study confirmed the use of O. vaginalis into current weed control techniques. O. vaginalis could be explored further for weed suppression in the field.

2.
ACS Omega ; 8(39): 35874-35883, 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37810676

Weed infestation can be harmful to crop growth and cause severe losses in yield by absorbing nutrients and releasing inhibitory secondary metabolites and thus needs to be controlled for food security. The use of synthetic herbicides is one of the most widely applied methods, but its frequent usage is a serious threat to health and the environment and develops resistance in weeds. Allelopathy is an eco-friendly bio-control method, and Trianthema portulacastrum extracts are known to be effective against various weeds in the crop of Triticum aestivum (wheat), but their effect on the main crop (wheat) is still unknown. The pot experiment was carried out, and various concentrations (30, 60, and 100%) of root and shoot extracts of T. portulacastrum and a synthetic herbicide (Metafin Super) along with control (distilled water) were applied to the wheat plants. Various morphological, physiological, and anatomical parameters were recorded under natural conditions. The objective of this study was to explore the allelopathic impact of T. portulacastrum compared to the synthetic herbicide on the growth of wheat. This study displayed that various growth characteristics of wheat were significantly affected at p ≤ 0.05 by root and shoot water extracts of T. portulacastrum but were less inhibitory as compared to the synthetic herbicide. This inhibition of the growth of wheat was coupled with a significant increase in total free amino acids, K ions, CAT (catalase), proline, epidermal and cortical thickness, and abaxial stomatal density. In addition, a reduction in growth parameters was correlated with a decrease in photosynthetic pigments. This study revealed that the use of T. portulacastrum extracts could be safer than synthetic herbicides for wheat plants and would be beneficial to control weeds in a wheat field.

3.
BMC Plant Biol ; 23(1): 397, 2023 Aug 19.
Article En | MEDLINE | ID: mdl-37596537

Agricultural production is severely limited by an iron deficiency. Alkaline soils increase iron deficiency in rice crops, consequently leading to nutrient deficiencies in humans. Adding iron to rice enhances both its elemental composition and the nutritional value it offers humans through the food chain. The purpose of the current pot experiment was to investigate the impact of Fe treatment in alkaline (pH 7.5) and acidic (pH 5.5) soils to introduce iron-rich rice. Iron was applied to the plants in the soil in the form of an aqueous solution of FeSO4 with five different concentrations (100, 200, 300, 400, and 500 mM). The results obtained from the current study demonstrated a significant increase in Fe content in Oryza sativa with the application of iron in both alkaline and acidic pH soils. Specifically, Basmati-515, one of the rice cultivars tested, exhibited a notable 13% increase in iron total accumulation per plant and an 11% increase in root-to-shoot ratio in acidic soil. In contrast to Basmati-198, which demonstrated maximum response in alkaline soil, Basmati-515 exhibited notable increases in all parameters, including a 31% increase in dry weight, 16% increase in total chlorophyll content, an 11% increase in CAT (catalase) activity, 7% increase in APX (ascorbate peroxidase) activity, 26% increase in POD (peroxidase) activity, and a remarkable 92% increase in SOD (superoxide dismutase) in acidic soil. In alkaline soil, Basmati-198 exhibited respective decreases of 40% and 39% in MDA and H2O2 content, whereas Basmati-515 demonstrated a more significant decrease of 50% and 67% in MDA and H2O2 in acidic soil. These results emphasize the potential for targeted soil management strategies to improve iron nutrition and address iron deficiency in agricultural systems. By considering soil conditions, it is possible to enhance iron content and promote its availability in alkaline and acidic soils, ultimately contributing to improved crop nutrition and human health.


Iron Deficiencies , Oryza , Humans , Soil , Hydrogen Peroxide , Iron
...