Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 180: 109011, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146840

RESUMEN

Image segmentation plays a pivotal role in medical image analysis, particularly for accurately isolating tumors and lesions. Effective segmentation improves diagnostic precision and facilitates quantitative analysis, which is vital for medical professionals. However, traditional segmentation methods often struggle with multilevel thresholding due to the associated computational complexity. Therefore, determining the optimal threshold set is an NP-hard problem, highlighting the pressing need for efficient optimization strategies to overcome these challenges. This paper introduces a multi-threshold image segmentation (MTIS) method that integrates a hybrid approach combining Differential Evolution (DE) and the Crayfish Optimization Algorithm (COA), known as HADECO. Utilizing two-dimensional (2D) Kapur's entropy and a 2D histogram, this method aims to enhance the efficiency and accuracy of subsequent image analysis and diagnosis. HADECO is a hybrid algorithm that combines DE and COA by exchanging information based on predefined rules, leveraging the strengths of both for superior optimization results. It employs Latin Hypercube Sampling (LHS) to generate a high-quality initial population. HADECO introduces an improved DE algorithm (IDE) with adaptive and dynamic adjustments to key DE parameters and new mutation strategies to enhance its search capability. In addition, it incorporates an adaptive COA (ACOA) with dynamic adjustments to the switching probability parameter, effectively balancing exploration and exploitation. To evaluate the effectiveness of HADECO, its performance is initially assessed using CEC'22 benchmark functions. HADECO is evaluated against several contemporary algorithms using the Wilcoxon signed rank test (WSRT) and the Friedman test (FT) to integrate the results. The findings highlight HADECO's superior optimization abilities, demonstrated by its lowest average Friedman ranking of 1.08. Furthermore, the HADECO-based MTIS method is evaluated using MRI images for knee and CT scans for brain intracranial hemorrhage (ICH). Quantitative results in brain hemorrhage image segmentation show that the proposed method achieves a superior average peak signal-to-noise ratio (PSNR) and feature similarity index (FSIM) of 1.5 and 1.7 at the 6-level threshold. In knee image segmentation, it attains an average PSNR and FSIM of 1.3 and 1.2 at the 5-level threshold, demonstrating the method's effectiveness in solving image segmentation problems.

2.
Diagnostics (Basel) ; 13(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37892032

RESUMEN

Carpal tunnel syndrome (CTS) is a prevalent medical condition resulting from compression of the median nerve in the hand, often caused by overuse or age-related factors. In this study, a total of 160 patients participated, including 80 individuals with CTS presenting varying levels of severity across different age groups. Numerous studies have explored the use of machine learning (ML) and deep learning (DL) techniques for CTS diagnosis. However, further research is required to fully leverage the potential of artificial intelligence (AI) technology in CTS diagnosis, addressing the challenges and limitations highlighted in the existing literature. In our work, we propose a novel approach for CTS diagnosis, prediction, and monitoring disease progression. The proposed framework consists of three main layers. Firstly, we employ three distinct DL models for CTS diagnosis. Through our experiments, the proposed approach demonstrates superior performance across multiple evaluation metrics, with an accuracy of 0.969%, precision of 0.982%, and recall of 0.963%. The second layer focuses on predicting the cross-sectional area (CSA) at 1, 3, and 6 months using ML models, aiming to forecast disease progression during therapy. The best-performing model achieves an accuracy of 0.9522, an R2 score of 0.667, a mean absolute error (MAE) of 0.0132, and a median squared error (MdSE) of 0.0639. The highest predictive performance is observed after 6 months. The third layer concentrates on assessing significant changes in the patients' health status through statistical tests, including significance tests, the Kruskal-Wallis test, and a two-way ANOVA test. These tests aim to determine the effect of injections on CTS treatment. The results reveal a highly significant reduction in symptoms, as evidenced by scores from the Symptom Severity Scale and Functional Status Scale, as well as a decrease in CSA after 1, 3, and 6 months following the injection. SHAP is then utilized to provide an understandable explanation of the final prediction. Overall, our study presents a comprehensive approach for CTS diagnosis, prediction, and monitoring, showcasing promising results in terms of accuracy, precision, and recall for CTS diagnosis, as well as effective prediction of disease progression and evaluation of treatment effectiveness through statistical analysis.

3.
Diagnostics (Basel) ; 13(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36900074

RESUMEN

A brain tumor is an abnormal growth of tissues inside the skull that can interfere with the normal functioning of the neurological system and the body, and it is responsible for the deaths of many individuals every year. Magnetic Resonance Imaging (MRI) techniques are widely used for detection of brain cancers. Segmentation of brain MRI is a foundational process with numerous clinical applications in neurology, including quantitative analysis, operational planning, and functional imaging. The segmentation process classifies the pixel values of the image into different groups based on the intensity levels of the pixels and a selected threshold value. The quality of the medical image segmentation extensively depends on the method which selects the threshold values of the image for the segmentation process. The traditional multilevel thresholding methods are computationally expensive since these methods thoroughly search for the best threshold values to maximize the accuracy of the segmentation process. Metaheuristic optimization algorithms are widely used for solving such problems. However, these algorithms suffer from the problem of local optima stagnation and slow convergence speed. In this work, the original Bald Eagle Search (BES) algorithm problems are resolved in the proposed Dynamic Opposite Bald Eagle Search (DOBES) algorithm by employing Dynamic Opposition Learning (DOL) at the initial, as well as exploitation, phases. Using the DOBES algorithm, a hybrid multilevel thresholding image segmentation approach has been developed for MRI image segmentation. The hybrid approach is divided into two phases. In the first phase, the proposed DOBES optimization algorithm is used for the multilevel thresholding. After the selection of the thresholds for the image segmentation, the morphological operations have been utilized in the second phase to remove the unwanted area present in the segmented image. The performance efficiency of the proposed DOBES based multilevel thresholding algorithm with respect to BES has been verified using the five benchmark images. The proposed DOBES based multilevel thresholding algorithm attains higher Peak Signal-to-Noise ratio (PSNR) and Structured Similarity Index Measure (SSIM) value in comparison to the BES algorithm for the benchmark images. Additionally, the proposed hybrid multilevel thresholding segmentation approach has been compared with the existing segmentation algorithms to validate its significance. The results show that the proposed algorithm performs better for tumor segmentation in MRI images as the SSIM value attained using the proposed hybrid segmentation approach is nearer to 1 when compared with ground truth images.

4.
Comput Intell Neurosci ; 2023: 6070970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926185

RESUMEN

The novel coronavirus disease (COVID-19), which appeared in Wuhan, China, is spreading rapidly worldwide. Health systems in many countries have collapsed as a result of this pandemic, and hundreds of thousands of people have died due to acute respiratory distress syndrome caused by this virus. As a result, diagnosing COVID-19 in the early stages of infection is critical in the fight against the disease because it saves the patient's life and prevents the disease from spreading. In this study, we proposed a novel approach based on transfer learning and deep support vector data description (DSVDD) to distinguish among COVID-19, non-COVID-19 pneumonia, and intact CT images. Our approach consists of three models, each of which can classify one specific category as normal and the other as anomalous. To our knowledge, this is the first study to use the one-class DSVDD and transfer learning to diagnose lung disease. For the proposed approach, we used two scenarios: one with pretrained VGG16 and one with ResNet50. The proposed models were trained using data gathered with the assistance of an expert radiologist from three internet-accessible sources in end-to-end fusion using three split data ratios. Based on training with 70%, 50%, and 30% of the data, the proposed VGG16 models achieved (0.8281, 0.9170, and 0.9294) for the F1 score, while the proposed ResNet50 models achieved (0.9109, 0.9188, and 0.9333).


Asunto(s)
Prueba de COVID-19 , COVID-19 , Humanos , COVID-19/diagnóstico por imagen , Aprendizaje , Aprendizaje Automático , Tomografía Computarizada por Rayos X
5.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36766597

RESUMEN

Carpal tunnel syndrome (CTS) is a clinical disease that occurs due to compression of the median nerve in the carpal tunnel. The determination of the severity of carpal tunnel syndrome is essential to provide appropriate therapeutic interventions. Machine learning (ML)-based modeling can be used to classify diseases, make decisions, and create new therapeutic interventions. It is also used in medical research to implement predictive models. However, despite the growth in medical research based on ML and Deep Learning (DL), CTS research is still relatively scarce. While a few studies have developed models to predict diagnosis of CTS, no ML model has been presented to classify the severity of CTS based on comprehensive clinical data. Therefore, this study developed new classification models for determining CTS severity using ML algorithms. This study included 80 patients with other diseases that have an overlap in symptoms with CTS, such as cervical radiculopathysasas, de quervian tendinopathy, and peripheral neuropathy, and 80 CTS patients who underwent ultrasonography (US)-guided median nerve hydrodissection. CTS severity was classified into mild, moderate, and severe grades. In our study, we aggregated the data from CTS patients and patients with other diseases that have an overlap in symptoms with CTS, such as cervical radiculopathysasas, de quervian tendinopathy, and peripheral neuropathy. The dataset was randomly split into training and test data, at 70% and 30%, respectively. The proposed model achieved promising results of 0.955%, 0.963%, and 0.919% in terms of classification accuracy, precision, and recall, respectively. In addition, we developed a machine learning model that predicts the probability of a patient improving after the hydro-dissection injection process based on the aggregated data after three different months (one, three, and six). The proposed model achieved accuracy after six months of 0.912%, after three months of 0.901%, and after one month 0.877%. The overall performance for predicting the prognosis after six months outperforms the prediction after one and three months. We utilized statistics tests (significance test, Spearman's correlation test, and two-way ANOVA test) to determine the effect of injection process in CTS treatment. Our data-driven decision support tools can be used to help determine which patients to operate on in order to avoid the associated risks and expenses of surgery.

6.
Soft comput ; : 1-29, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35574265

RESUMEN

The rapid growth of data generated by several applications like engineering, biotechnology, energy, and others has become a crucial challenge in the high dimensional data mining. The large amounts of data, especially those with high dimensions, may contain many irrelevant, redundant, or noisy features, which may negatively affect the accuracy and efficiency of the industrial data mining process. Recently, several meta-heuristic optimization algorithms have been utilized to evolve feature selection techniques for dealing with the vast dimensionality problem. Despite optimization algorithms' ability to find the near-optimal feature subset of the search space, they still face some global optimization challenges. This paper proposes an improved version of the sooty tern optimization (ST) algorithm, namely the ST-AL method, to improve the search performance for high-dimensional industrial optimization problems. ST-AL method is developed by boosting the performance of STOA by applying four strategies. The first strategy is the use of a control randomization parameters that ensure the balance between the exploration-exploitation stages during the search process; moreover, it avoids falling into local optimums. The second strategy entails the creation of a new exploration phase based on the Ant lion (AL) algorithm. The third strategy is improving the STOA exploitation phase by modifying the main equation of position updating. Finally, the greedy selection is used to ignore the poor generated population and keeps it from diverging from the existing promising regions. To evaluate the performance of the proposed ST-AL algorithm, it has been employed as a global optimization method to discover the optimal value of ten CEC2020 benchmark functions. Also, it has been applied as a feature selection approach on 16 benchmark datasets in the UCI repository and compared with seven well-known optimization feature selection methods. The experimental results reveal the superiority of the proposed algorithm in avoiding local minima and increasing the convergence rate. The experimental result are compared with state-of-the-art algorithms, i.e., ALO, STOA, PSO, GWO, HHO, MFO, and MPA and found that the mean accuracy achieved is in range 0.94-1.00.

7.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35214297

RESUMEN

The increasing use of Internet of Things (IoT) applications in various aspects of our lives has created a huge amount of data. IoT applications often require the presence of many technologies such as cloud computing and fog computing, which have led to serious challenges to security. As a result of the use of these technologies, cyberattacks are also on the rise because current security methods are ineffective. Several artificial intelligence (AI)-based security solutions have been presented in recent years, including intrusion detection systems (IDS). Feature selection (FS) approaches are required for the development of intelligent analytic tools that need data pretreatment and machine-learning algorithm-performance enhancement. By reducing the number of selected features, FS aims to improve classification accuracy. This article presents a new FS method through boosting the performance of Gorilla Troops Optimizer (GTO) based on the algorithm for bird swarms (BSA). This BSA is used to boost performance exploitation of GTO in the newly developed GTO-BSA because it has a strong ability to find feasible regions with optimal solutions. As a result, the quality of the final output will increase, improving convergence. GTO-BSA's performance was evaluated using a variety of performance measures on four IoT-IDS datasets: NSL-KDD, CICIDS-2017, UNSW-NB15 and BoT-IoT. The results were compared to those of the original GTO, BSA, and several state-of-the-art techniques in the literature. According to the findings of the experiments, GTO-BSA had a better convergence rate and higher-quality solutions.


Asunto(s)
Internet de las Cosas , Algoritmos , Inteligencia Artificial , Nube Computacional , Aprendizaje Automático
8.
Environ Sci Pollut Res Int ; 29(24): 35841-35861, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35061183

RESUMEN

Natural streams longitudinal dispersion coefficient (Kx) is an essential indicator for pollutants transport and its determination is very important. Kx is influenced by several parameters, including river hydraulic geometry, sediment properties, and other morphological characteristics, and thus its calculation is a highly complex engineering problem. In this research, three relatively explored machine learning (ML) models, including Random Forest (RF), Gradient Boosting Decision Tree (GTB), and XGboost-Grid, were proposed for the Kx determination. The modeling scheme on building the prediction matrix was adopted from the well-established literature. Several input combinations were tested for better predictability performance for the Kx. The modeling performance was tested based on the data division for the training and testing (70-30% and 80-20%). Based on the attained modeling results, XGboost-Grid reported the best prediction results over the training and testing phase compared to RF and GTB models. The development of the newly established machine learning model revealed an excellent computed-aided technology for the Kx simulation.


Asunto(s)
Aprendizaje Automático , Ríos , Contaminación del Agua , Estados Unidos , Contaminación del Agua/análisis
9.
PLoS One ; 16(11): e0260232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34797851

RESUMEN

Smartphone usage is nearly ubiquitous worldwide, and Android provides the leading open-source operating system, retaining the most significant market share and active user population of all open-source operating systems. Hence, malicious actors target the Android operating system to capitalize on this consumer reliance and vulnerabilities present in the system. Hackers often use confidential user data to exploit users for advertising, extortion, and theft. Notably, most Android malware detection tools depend on conventional machine-learning algorithms; hence, they lose the benefits of metaheuristic optimization. Here, we introduce a novel detection system based on optimizing the random vector functional link (RVFL) using the artificial Jellyfish Search (JS) optimizer following dimensional reduction of Android application features. JS is used to determine the optimal configurations of RVFL to improve classification performance. RVFL+JS minimizes the runtime of the execution of the optimized models with the best performance metrics, based on a dataset consisting of 11,598 multi-class applications and 471 static and dynamic features.


Asunto(s)
Procedimientos de Cirugía Plástica/instrumentación , Procedimientos de Cirugía Plástica/métodos , Teléfono Inteligente/instrumentación , Algoritmos , Benchmarking/métodos , Aprendizaje Automático , Programas Informáticos
10.
PLoS One ; 16(6): e0252754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111168

RESUMEN

Deep Reinforcement Learning (DRL) enables agents to make decisions based on a well-designed reward function that suites a particular environment without any prior knowledge related to a given environment. The adaptation of hyperparameters has a great impact on the overall learning process and the learning processing times. Hyperparameters should be accurately estimated while training DRL algorithms, which is one of the key challenges that we attempt to address. This paper employs a swarm-based optimization algorithm, namely the Whale Optimization Algorithm (WOA), for optimizing the hyperparameters of the Deep Deterministic Policy Gradient (DDPG) algorithm to achieve the optimum control strategy in an autonomous driving control problem. DDPG is capable of handling complex environments, which contain continuous spaces for actions. To evaluate the proposed algorithm, the Open Racing Car Simulator (TORCS), a realistic autonomous driving simulation environment, was chosen to its ease of design and implementation. Using TORCS, the DDPG agent with optimized hyperparameters was compared with a DDPG agent with reference hyperparameters. The experimental results showed that the DDPG's hyperparameters optimization leads to maximizing the total rewards, along with testing episodes and maintaining a stable driving policy.


Asunto(s)
Algoritmos , Conducción de Automóvil , Aprendizaje , Refuerzo en Psicología , Reproducibilidad de los Resultados , Recompensa
11.
Ecotoxicol Environ Saf ; 204: 111059, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32791357

RESUMEN

Exploring the Manganese (Mn) removal prediction with several independent variables is tremendously critical and indispensable to understand the pattern of removal process. Mn is one of the key heavy metals (HMs) stipulated by the WHO for the development of many attributes of the ecosystem in controlled quantity. In the present paper, an extreme gradient model (XGBoost) is proposed for Mn prediction. A compressive statistical analysis reveals the stochastics behaviour of the data prior to the prediction investigation. The main goal is to determine the Mn predictability of XGBoost algorithm with influencing factors such as D2EHPA (M), Time (min), H2SO4 (M), NaCl (g/L), and EDTA (mM). The PCA biplot signifies the importance of the predictors. The XGBoost model validated against a diversity of data-driven models such as multilinear regression (MLR), support vector machine (SVM), and random forest (RF). The order of the applied models' performance are XGBoost > RF > SVM > MLR as per their R2 and RMSE metrics over testing phase i.e. 20.88, 0.75, 0.61, 0.40, and 2.23, 3.01, 3.51, 6.38, respectively. Moreover, the Taylor diagram and Radar chart have drown to emphasize the XGBoost model efficiency, stability, and reliability. In respect of XGBoost model prediction, 'Time' predictor outperforms D2EHPA, EDTA, H2SO4, and NaCl predictors in order.


Asunto(s)
Agua Dulce/química , Manganeso/análisis , Modelos Teóricos , Máquina de Vectores de Soporte , Contaminantes Químicos del Agua/análisis , Algoritmos , Ecosistema , Predicción , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA