Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Endocrinol ; 29(9): 1320-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192107

RESUMEN

Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.


Asunto(s)
Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético/fisiología , PPAR gamma/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño , Rosiglitazona , Tiazolidinedionas/farmacología , Enzimas Ubiquitina-Conjugadoras/genética
2.
Mol Endocrinol ; 28(3): 395-405, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24438340

RESUMEN

Steroid receptor coactivator 1 (SRC-1) drives diverse gene expression programs necessary for the dynamic regulation of cancer metastasis, inflammation and gluconeogenesis, pointing to its overlapping roles as an oncoprotein and integrator of cell metabolic programs. Nutrient utilization has been intensely studied with regard to cellular adaptation in both cancer and noncancerous cells. Nonproliferating cells consume glucose through the citric acid cycle to generate NADH to fuel ATP generation via mitochondrial oxidative phosphorylation. In contrast, cancer cells undergo metabolic reprogramming to support rapid proliferation. To generate lipids, nucleotides, and proteins necessary for cell division, most tumors switch from oxidative phosphorylation to glycolysis, a phenomenon known as the Warburg Effect. Because SRC-1 is a key coactivator responsible for driving a hepatic gluconeogenic program under fasting conditions, we asked whether SRC-1 responds to alterations in nutrient availability to allow for adaptive metabolism. Here we show SRC-1 is stabilized by the 26S proteasome in the absence of glucose. RNA profiling was used to examine the effects of SRC-1 perturbation on gene expression in the absence or presence of glucose, revealing that SRC-1 affects the expression of complex I of the mitochondrial electron transport chain, a set of enzymes responsible for the conversion of NADH to NAD(+). NAD(+) and NADH were subsequently identified as metabolites that underlie SRC-1's response to glucose deprivation. Knockdown of SRC-1 in glycolytic cancer cells abrogated their ability to grow in the absence of glucose consistent with SRC-1's role in promoting cellular adaptation to reduced glucose availability.


Asunto(s)
Glucosa/metabolismo , Homeostasis , NAD/metabolismo , Coactivador 1 de Receptor Nuclear/fisiología , Línea Celular Tumoral , Supervivencia Celular , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Expresión Génica , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis
3.
J Biol Chem ; 288(20): 14059-14067, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23564452

RESUMEN

Scap is a polytopic protein of the endoplasmic reticulum (ER) that controls cholesterol homeostasis by transporting sterol regulatory element-binding proteins (SREBPs) from the ER to the Golgi complex. Scap has eight transmembrane helices (TM) joined by four small hydrophilic loops and three large loops. Two of the large loops (Loops 1 and 7) are in the ER lumen, and the other large loop (Loop 6) faces the cytosol where it binds COPII proteins that initiate transport to Golgi. Cholesterol binding to Loop 1 alters the configuration of Loop 6, precluding COPII binding and preventing the exit of Scap from the ER. Here, we create a point mutation (Y640S) in luminal Loop 7 that prevents Scap movement to Golgi. Trypsin cleavage assays show that Loop 6 of Scap(Y640S) is always in the configuration that precludes COPII binding, even in the absence of cholesterol. When expressed separately by co-transfection, the NH2-terminal portion of Scap (containing TM helices 1-6, including Loop 1) binds to the COOH-terminal portion (containing TM helices 7-8 and Loop 7) as determined by co-immunoprecipitation. This binding does not occur when Loop 7 contains the Y640S mutation. Co-immunoprecipitation is also abolished by a point mutation in Loop 1 (Y234A) that also prevents Scap movement. These data suggest that Scap Loop 1 must interact with Loop 7 to maintain Loop 6 in the configuration that permits COPII binding. These results help explain the operation of Scap as a sterol sensor.


Asunto(s)
Aparato de Golgi/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Animales , Células CHO , Colesterol/metabolismo , Cricetinae , Medios de Cultivo , Retículo Endoplásmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Plásmidos/metabolismo , Mutación Puntual , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Esteroles/metabolismo
4.
J Biol Chem ; 286(20): 18002-12, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454655

RESUMEN

Cellular cholesterol homeostasis is maintained by Scap, an endoplasmic reticulum (ER) protein with eight transmembrane helices. In cholesterol-depleted cells, Scap transports sterol regulatory element-binding proteins (SREBPs) to the Golgi, where the active fragment of SREBP is liberated by proteases so that it can activate genes for cholesterol synthesis. When ER cholesterol increases, Scap binds cholesterol, and this changes the conformation of cytosolic Loop 6, which contains the binding site for COPII proteins. The altered conformation precludes COPII binding, abrogating movement to the Golgi. Consequently, cholesterol synthesis declines. Here, we identify the cholesterol-binding site on Scap as Loop 1, a 245-amino acid sequence that projects into the ER lumen. Recombinant Loop 1 binds sterols with a specificity identical to that of the entire Scap membrane domain. When tyrosine 234 in Loop 1 is mutated to alanine, Loop 6 assumes the cholesterol-bound conformation, even in sterol-depleted cells. As a result, full-length Scap(Y234A) cannot mediate SREBP processing in transfected cells. These results indicate that luminal Loop 1 of Scap controls the conformation of cytosolic Loop 6, thereby determining whether cells produce cholesterol.


Asunto(s)
Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Homeostasis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Sustitución de Aminoácidos , Animales , Colesterol/genética , Cricetinae , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Mutación Missense , Unión Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas/fisiología , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
5.
Cell Metab ; 12(2): 166-73, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20674861

RESUMEN

Water-soluble Niemann-Pick C2 (NPC2) and membrane-bound NPC1 are cholesterol-binding lysosomal proteins required for export of lipoprotein-derived cholesterol from lysosomes. The binding site in NPC1 is located in its N-terminal domain (NTD), which projects into the lysosomal lumen. Here we perform alanine-scanning mutagenesis to identify residues in NPC2 that are essential for transfer of cholesterol to NPC1(NTD). Transfer requires three residues that form a patch on the surface of NPC2. We previously identified a patch of residues on the surface of NPC1(NTD) that are required for transfer. We present a model in which these two surface patches on NPC2 and NPC1(NTD) interact, thereby opening an entry pore on NPC1(NTD) and allowing cholesterol to transfer without passing through the water phase. We refer to this transfer as a hydrophobic handoff and hypothesize that this handoff is essential for cholesterol export from lysosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Glicoproteínas/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Alanina/química , Alanina/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intracelular , Mutagénesis , Proteína Niemann-Pick C1 , Estructura Terciaria de Proteína , Proteínas de Transporte Vesicular
6.
Org Lett ; 9(11): 2167-70, 2007 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-17451249

RESUMEN

Pt(II)-catalyzed cycloisomerization of aziridinyl propargylic esters affords 1,2-dihydropyridines with regiodefined installation of substituents. A mild conversion of the 1,2-dihydropyridines to the corresponding substituted pyridines as well as chirality retention from the aziridinyl propargylic ester substrates have been demonstrated.


Asunto(s)
Dihidropiridinas/síntesis química , Platino (Metal)/química , Catálisis , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA