Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
HGG Adv ; 3(3): 100111, 2022 Jul 14.
Article En | MEDLINE | ID: mdl-35571680

CSNK2B encodes for casein kinase II subunit beta (CK2ß), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and ß-catenin with mutated CK2ß. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated ß-catenin and consequent absence of active ß-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear ß-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.

2.
Genet Med ; 24(8): 1708-1721, 2022 08.
Article En | MEDLINE | ID: mdl-35583550

PURPOSE: LEF1 encodes a transcription factor acting downstream of the WNT-ß-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants. METHODS: High-throughput sequencing was employed to delineate the genetic underpinnings of the disease. Cellular consequences were characterized by immunofluorescence, immunoblotting, pulldown assays, and/or RNA sequencing. RESULTS: Monoallelic variants in LEF1 were detected in 11 affected individuals from 4 unrelated families, and a biallelic variant was detected in an affected individual from a consanguineous family. The phenotypic spectrum includes various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Depending on the type and location of LEF1 variants, the inheritance of this novel Mendelian condition can be either autosomal dominant or recessive. Our functional data indicate that 2 molecular mechanisms are at play: haploinsufficiency or loss of DNA binding are responsible for a mild to moderate phenotype, whereas loss of ß-catenin binding caused by biallelic variants is associated with a severe phenotype. Transcriptomic studies reveal an alteration of WNT signaling. CONCLUSION: Our findings establish mono- and biallelic variants in LEF1 as a cause for a novel syndrome comprising limb malformations and ectodermal dysplasia.


Ectodermal Dysplasia , Lymphoid Enhancer-Binding Factor 1/genetics , Wnt Signaling Pathway , Consanguinity , Ectodermal Dysplasia/genetics , Humans , Limb Deformities, Congenital , Lymphoid Enhancer-Binding Factor 1/metabolism , Syndrome , beta Catenin/genetics , beta Catenin/metabolism
3.
Genet Med ; 23(11): 2138-2149, 2021 11.
Article En | MEDLINE | ID: mdl-34244665

PURPOSE: We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition. METHODS: We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable. RESULTS: In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4. CONCLUSION: We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans.


Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Cadherin Related Proteins , Cadherins/genetics , Humans , Intellectual Disability/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Phenotype , Seizures/genetics
4.
EMBO Mol Med ; 13(8): e14150, 2021 08 09.
Article En | MEDLINE | ID: mdl-34133077

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.


COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Immunity, Innate , Inflammasomes , Interleukin-1beta , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2
5.
Hum Mutat ; 42(4): 460-472, 2021 04.
Article En | MEDLINE | ID: mdl-33600046

Hereditary lower motor neuron diseases (LMND) other than 5q-spinal muscular atrophy (5q-SMA) can be classified according to affected muscle groups. Proximal and distal forms of non-5q-SMA represent a clinically and genetically heterogeneous spectrum characterized by significant overlaps with axonal forms of Charcot-Marie-Tooth (CMT) disease. A consensus for the best approach to molecular diagnosis needs to be reached, especially in light of continuous novel gene discovery and falling costs of next-generation sequencing (NGS). We performed exome sequencing (ES) in 41 families presenting with non-5q-SMA or axonal CMT, 25 of which had undergone a previous negative neuromuscular disease (NMD) gene panel analysis. The total diagnostic yield of ES was 41%. Diagnostic success in the cohort with a previous NMD-panel analysis was significantly extended by ES, primarily due to novel gene associated-phenotypes and uncharacteristic phenotypic presentations. We recommend early ES for individuals with hereditary LMND presenting uncharacteristic or significantly overlapping features. As mitochondrial dysfunction was the underlying pathomechanism in 47% of the solved individuals, we highlight the sensitivity of the anterior horn cell and peripheral nerve to mitochondrial imbalance as well as the necessity to screen for mitochondrial disorders in individuals presenting predominant lower motor neuron symptoms.


Charcot-Marie-Tooth Disease , Muscular Atrophy, Spinal , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Genomics , High-Throughput Nucleotide Sequencing , Humans , Mitochondria/genetics , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics
6.
Am J Med Genet A ; 185(1): 90-96, 2021 01.
Article En | MEDLINE | ID: mdl-33048476

Genetic diseases are a major cause of neonatal morbidity and mortality. The clinical differential diagnosis in severely ill neonates, especially in premature infants, is challenging. Next generation sequencing (NGS) diagnostics is a valuable tool, but the turnaround time is often too long to provide a diagnosis in the time needed for clinical guidance in newborn intensive care units (NICU). To minimize turnaround time, we developed an ultra-rapid whole genome sequencing pipeline and tested it in clinical practice. Our pilot case, was a preterm infant presenting with several crises of dehydration, hypoglycaemia and hyponatremia together with nephrocalcinosis and hypertrophic cardiomyopathy. Whole genome sequencing was performed using a paired-end 2x75bp protocol. Sequencing data were exported after 50 sequencing cycles for a first analysis. After run completion, the rapid-sequencing protocol, a second analysis of the 2 x 75 paired-end run was performed. Both analyses comprised read-mapping and SNP-/indel calling on an on-site Edico Genome DRAGEN server, followed by functional annotation and pathogenicity prediction using in-house scripts. After the first analysis within 17 h, the emergency ultra-rapid protocol identified two novel compound heterozygous variants in the insulin receptor gene (INSR), pathogenic variants in which cause Donohue Syndrome. The genetic diagnosis could be confirmed by detection of hyperinsulinism and patient care adjusted. Nonetheless, we decided to pursue RNA studies, proving the functional effect of the novel splice variant and reduced expression levels of INSR in patients skin fibroblasts.


Antigens, CD/genetics , Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing , Hypoglycemia/diagnosis , Receptor, Insulin/genetics , Dehydration/diagnosis , Dehydration/genetics , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Humans , Hypoglycemia/pathology , Infant , Infant Mortality , Infant, Newborn , Infant, Premature , Intensive Care Units, Neonatal , Male , Molecular Sequence Annotation , Polymorphism, Single Nucleotide/genetics , Protein Isoforms/genetics , Whole Genome Sequencing
7.
Proc Natl Acad Sci U S A ; 117(26): 15137-15147, 2020 06 30.
Article En | MEDLINE | ID: mdl-32554502

RNA modifications play a fundamental role in cellular function. Pseudouridylation, the most abundant RNA modification, is catalyzed by the H/ACA small ribonucleoprotein (snoRNP) complex that shares four core proteins, dyskerin (DKC1), NOP10, NHP2, and GAR1. Mutations in DKC1, NOP10, or NHP2 cause dyskeratosis congenita (DC), a disorder characterized by telomere attrition. Here, we report a phenotype comprising nephrotic syndrome, cataracts, sensorineural deafness, enterocolitis, and early lethality in two pedigrees: males with DKC1 p.Glu206Lys and two children with homozygous NOP10 p.Thr16Met. Females with heterozygous DKC1 p.Glu206Lys developed cataracts and sensorineural deafness, but nephrotic syndrome in only one case of skewed X-inactivation. We found telomere attrition in both pedigrees, but no mucocutaneous abnormalities suggestive of DC. Both mutations fall at the dyskerin-NOP10 binding interface in a region distinct from those implicated in DC, impair the dyskerin-NOP10 interaction, and disrupt the catalytic pseudouridylation site. Accordingly, we found reduced pseudouridine levels in the ribosomal RNA (rRNA) of the patients. Zebrafish dkc1 mutants recapitulate the human phenotype and show reduced 18S pseudouridylation, ribosomal dysregulation, and a cell-cycle defect in the absence of telomere attrition. We therefore propose that this human disorder is the consequence of defective snoRNP pseudouridylation and ribosomal dysfunction.


Cataract/genetics , Cell Cycle Proteins/genetics , Enterocolitis/genetics , Hearing Loss, Sensorineural/genetics , Nephrotic Syndrome/genetics , Nuclear Proteins/genetics , Ribonucleoproteins, Small Nucleolar/genetics , Animals , Child , Female , Genetic Predisposition to Disease , Humans , Longevity , Male , Models, Molecular , Molecular Dynamics Simulation , Mutation , Pedigree , Protein Conformation , RNA, Ribosomal/genetics , Zebrafish
8.
Am J Hum Genet ; 107(1): 34-45, 2020 07 02.
Article En | MEDLINE | ID: mdl-32497488

IFAP syndrome is a rare genetic disorder characterized by ichthyosis follicularis, atrichia, and photophobia. Previous research found that mutations in MBTPS2, encoding site-2-protease (S2P), underlie X-linked IFAP syndrome. The present report describes the identification via whole-exome sequencing of three heterozygous mutations in SREBF1 in 11 unrelated, ethnically diverse individuals with autosomal-dominant IFAP syndrome. SREBF1 encodes sterol regulatory element-binding protein 1 (SREBP1), which promotes the transcription of lipogenes involved in the biosynthesis of fatty acids and cholesterols. This process requires cleavage of SREBP1 by site-1-protease (S1P) and S2P and subsequent translocation into the nucleus where it binds to sterol regulatory elements (SRE). The three detected SREBF1 mutations caused substitution or deletion of residues 527, 528, and 530, which are crucial for S1P cleavage. In vitro investigation of SREBP1 variants demonstrated impaired S1P cleavage, which prohibited nuclear translocation of the transcriptionally active form of SREBP1. As a result, SREBP1 variants exhibited significantly lower transcriptional activity compared to the wild-type, as demonstrated via luciferase reporter assay. RNA sequencing of the scalp skin from IFAP-affected individuals revealed a dramatic reduction in transcript levels of low-density lipoprotein receptor (LDLR) and of keratin genes known to be expressed in the outer root sheath of hair follicles. An increased rate of in situ keratinocyte apoptosis, which might contribute to skin hyperkeratosis and hypotrichosis, was also detected in scalp samples from affected individuals. Together with previous research, the present findings suggest that SREBP signaling plays an essential role in epidermal differentiation, skin barrier formation, hair growth, and eye function.


Arthrogryposis/genetics , Mutation/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Gene Expression Regulation/genetics , Humans , Keratosis/genetics , Male , Middle Aged , Pedigree , Phenotype , Young Adult
11.
Clin Genet ; 98(1): 32-42, 2020 07.
Article En | MEDLINE | ID: mdl-32279305

Nonsyndromic hearing loss is an extremely heterogeneous disorder. Thus, clinical diagnostics is challenging, in particular due to differences in the etiology of hearing loss between populations. With this study, we wanted to elucidate the genetic basis of hearing loss in 61 consanguineous Egyptian families. In 25 families, linkage analysis was used as a prescreening to identify regions for targeted sequencing of candidate genes. Initially, the coding regions of 12 and later of 94 genes associated with hearing loss were enriched and subjected to massively parallel sequencing (MPS) with diagnostic yields of 36% and 75%, respectively. Causative variants were identified in 48 families (79%). They were found in 23 different genes with the majority being located in MYO15A (15.3%), SLC26A4 (9.7%), GJB2 (8.3%), and MYO7A (6.4%). As many as 32 variants were novel ones at the time of detection. Five variants were shared by two, three, or even four families. Our study provides a first survey of the mutational spectrum of deaf patients in Egypt revealing less GJB2 variants than in many European populations. It underlines the value of targeted enrichment of well-selected deafness genes in combination with MPS in the diagnostics of this frequent and genetically heterogeneous disorder.


Deafness/genetics , Hearing Loss, Sensorineural/genetics , Egypt , Family , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Pedigree
12.
Hum Mutat ; 41(3): 591-599, 2020 03.
Article En | MEDLINE | ID: mdl-31821646

RHOA is a member of the Rho family of GTPases that are involved in fundamental cellular processes including cell adhesion, migration, and proliferation. RHOA can stimulate the formation of stress fibers and focal adhesions and is a key regulator of actomyosin dynamics in various tissues. In a Genematcher-facilitated collaboration, we were able to identify four unrelated individuals with a specific phenotype characterized by hypopigmented areas of the skin, dental anomalies, body asymmetry, and limb length discrepancy due to hemihypotrophy of one half of the body, as well as brain magnetic resonance imaging (MRI) anomalies. Using whole-exome and ultra-deep amplicon sequencing and comparing genomic data of affected and unaffected areas of the skin, we discovered that all four individuals carried the identical RHOA missense variant, c.139G>A; p.Glu47Lys, in a postzygotic state. Molecular modeling and in silico analysis of the affected p.Glu47Lys residue in RHOA indicated that this exchange is predicted to specifically alter the interaction of RHOA with its downstream effectors containing a PKN-type binding domain and thereby disrupts its ability to activate signaling. Our findings indicate that the recurrent postzygotic RHOA missense variant p.Glu47Lys causes a specific mosaic disorder in humans.


Alleles , Codon , Genetic Association Studies , Genetic Variation , Neural Plate/metabolism , Phenotype , rhoA GTP-Binding Protein/genetics , Adolescent , Adult , Brain/abnormalities , Brain/diagnostic imaging , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Models, Molecular , Neural Plate/abnormalities , Neural Plate/embryology , Protein Conformation , Structure-Activity Relationship , Young Adult , rhoA GTP-Binding Protein/chemistry
13.
Genet Med ; 22(3): 511-523, 2020 03.
Article En | MEDLINE | ID: mdl-31680123

PURPOSE: Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood. METHODS: In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA). RESULTS: We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease-gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3, EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1, SCN5A, SCN8A, and ZEB2. Furthermore, a sibling pair harbored a homozygous copy-number variant in TNNT1, an ultrarare congenital myopathy gene that has been linked to arthrogryposis via Gene Ontology analysis. CONCLUSION: Our analysis indicates that genetic defects leading to primary skeletal muscle diseases might have been underdiagnosed, especially pathogenic variants in RYR1. We discuss three novel putative fetal akinesia genes: GCN1, IQSEC3 and RYR3. Of those, IQSEC3, and RYR3 had been proposed as neuromuscular disease-associated genes recently, and our findings endorse them as FA candidate genes. By combining NGS with deep clinical phenotyping, we achieved a 73% success rate of solved cases.


Fetal Diseases/genetics , Guanine Nucleotide Exchange Factors/genetics , RNA-Binding Proteins/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Trans-Activators/genetics , Adolescent , Adult , Arthrogryposis/genetics , Arthrogryposis/pathology , Child , Child, Preschool , DNA Copy Number Variations/genetics , Female , Fetal Diseases/pathology , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Muscular Diseases/genetics , Muscular Diseases/pathology , Young Adult
14.
Article En | MEDLINE | ID: mdl-31604777

Infants suffering from life-threatening apnea, stridor, cyanosis, and increased muscle tone may often be misdiagnosed with infantile seizures and inappropriately treated because of lack and delay in genetic diagnosis. Here, we report a patient with increased muscle tone after birth and hypertonic attacks with life-threatening apnea but no epileptiform patterns in EEG recordings. We identified novel compound heterozygous variants in SLC6A5 (NM_004211.4:c.[1429T > C];[1430delC]) by trio whole-exome sequencing, containing a base deletion inherited by the asymptomatic mother leading to a frameshift (c.1430delC, p.Ser477PhefsTer9) and a de novo base exchange leading to an amino acid change (c.1429T > C, p.Ser477Pro). To date, there are four known disease-associated genes for primary hyperekplexia, all of which are involved in the functioning of glycinergic synapses. SLC6A5 encodes the sodium- and chloride-dependent glycine transporter 2 (GlyT2), which recaptures glycine, a major inhibitory transmitter in the brainstem and spinal cord. The diagnosis altered the patient's medical care to his benefit because SLC6A5 mutations with rather benign courses of hyperekplexia may be spared of needless pharmacotherapy. Symptoms eventually decreased in frequency until about once in 2 mo at 2 yr age. We present the first report of halting hyperekplexia episodes by maternal soothing in multiple instances. We highlight the importance of clarifying the genetic diagnosis by rapid next-generation sequencing techniques in this group of infantile apneic attacks with hyperekplexia due to the broad differential diagnoses.


Glycine Plasma Membrane Transport Proteins/genetics , Hyperekplexia/genetics , Apnea/genetics , Child, Preschool , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Hyperekplexia/therapy , Infant , Male , Mutation , Exome Sequencing/methods
15.
Ann Neurol ; 86(3): 368-383, 2019 09.
Article En | MEDLINE | ID: mdl-31298765

OBJECTIVE: Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS: Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS: We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION: SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.


DNA-Binding Proteins/genetics , Genetic Predisposition to Disease/genetics , Mitochondrial Proteins/genetics , Optic Atrophy, Autosomal Dominant/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Female , Gene Knockdown Techniques , Genetic Linkage/genetics , Humans , Male , Mice , Mutation, Missense , Optic Atrophy, Autosomal Dominant/pathology , Pedigree , RNA, Messenger/genetics , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Zebrafish/genetics
16.
J Transl Med ; 17(1): 205, 2019 06 19.
Article En | MEDLINE | ID: mdl-31217010

BACKGROUND: In our recent clinical trial, increased peripheral concentrations of pro-inflammatory molecular mediators were determined in complex regional pain syndrome (CRPS) patients. After 3 months adjunctive unilateral, selective L4 dorsal root ganglion stimulation (L4-DRGSTIM), significantly decreased serum IL-10 and increased saliva oxytocin levels were assessed along with an improved pain and functional state. The current study extended molecular profiling towards gene expression analysis of genes known to be involved in the gonadotropin releasing hormone receptor and neuroinflammatory (cytokines/chemokines) signaling pathways. METHODS: Blood samples were collected from 12 CRPS patients for whole-transcriptome profiling in order to assay 18,845 inflammation-associated genes from frozen blood at baseline and after 3 months L4-DRGSTIM using PANTHER™ pathway enrichment analysis tool. RESULTS: Pathway enrichment analyses tools (GOrilla™ and PANTHER™) showed predominant involvement of inflammation mediated by chemokines/cytokines and gonadotropin releasing hormone receptor pathways. Further, screening of differentially regulated genes showed changes in innate immune response related genes. Transcriptomic analysis showed that 21 genes (predominantly immunoinflammatory) were significantly changed after L4-DRGSTIM. Seven genes including TLR1, FFAR2, IL1RAP, ILRN, C5, PKB and IL18 were down regulated and fourteen genes including CXCL2, CCL11, IL36G, CRP, SCGB1A1, IL-17F, TNFRSF4, PLA2G2A, CREB3L3, ADAMTS12, IL1F10, NOX1, CHIA and BDKRB1 were upregulated. CONCLUSIONS: In our sub-group analysis of L4-DRGSTIM treated CRPS patients, we found either upregulated or downregulated genes involved in immunoinflammatory circuits relevant for the pathophysiology of CRPS indicating a possible relation. However, large biobank-based approaches are recommended to establish genetic phenotyping as a quantitative outcome measure in CRPS patients. Trial registration The study protocol was registered at the 15.11.2016 on German Register for Clinical Trials (DRKS ID 00011267). https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00011267.


Chronic Pain/therapy , Complex Regional Pain Syndromes/therapy , Inflammation/blood , Inflammation/genetics , Neuralgia/therapy , Pain Management/methods , Transcutaneous Electric Nerve Stimulation/methods , Aged , Biomarkers/blood , Biomarkers/metabolism , Chronic Pain/blood , Complex Regional Pain Syndromes/blood , Complex Regional Pain Syndromes/genetics , Complex Regional Pain Syndromes/metabolism , Cytokines/blood , Cytokines/genetics , Female , Ganglia, Spinal/physiology , Gene Expression Profiling , Humans , Inflammation/etiology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Knee/pathology , Male , Metabolic Networks and Pathways/genetics , Middle Aged , Neuralgia/blood , Pain, Postoperative/blood , Pain, Postoperative/etiology , Pain, Postoperative/therapy , Saliva/chemistry , Saliva/metabolism
17.
Nucleus ; 9(1): 503-515, 2018.
Article En | MEDLINE | ID: mdl-30220251

Nesprin-2 is a nuclear envelope component and provides a link between cytoskeletal components of the cytoplasm and the nucleoplasm. Several isoforms are generated from its gene Syne2. Loss of the largest isoform Nesprin-2 Giant in mice is associated with a skin phenotype and altered wound healing, loss of C-terminal isoforms in mice leads to cardiomyopathies and neurological defects. Here we attempted to establish mice with an inducible knockout of all Nesprin-2 isoforms by inserting shRNA encoding sequences targeting the N- and C-terminus into the ROSA26 locus of mice. This caused early embryonic death of the animals harboring the mutant allele, which was presumably due to leaky expression of the shRNAs. Mutant embryos were only observed before E13. They had an altered appearance and were smaller in size than their wild type littermates. From this we conclude that the Nesprin-2 gene function is crucial during embryonic growth, differentiation and organogenesis.


Embryo Loss/genetics , Embryonic Development/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Animals , Female , Fibroblasts/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Phenotype , Pregnancy
18.
J Clin Invest ; 128(10): 4313-4328, 2018 10 01.
Article En | MEDLINE | ID: mdl-30179222

Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.


Nephrotic Syndrome/metabolism , Nuclear Pore Complex Proteins/metabolism , Xenopus Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Humans , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Nuclear Pore Complex Proteins/genetics , Xenopus Proteins/genetics , Xenopus laevis , Zebrafish , Zebrafish Proteins/genetics
19.
PLoS One ; 13(8): e0202022, 2018.
Article En | MEDLINE | ID: mdl-30148849

Genetic Generalized Epilepsy (GGE) and benign epilepsy with centro-temporal spikes or Rolandic Epilepsy (RE) are common forms of genetic epilepsies. Rare copy number variants have been recognized as important risk factors in brain disorders. We performed a systematic survey of rare deletions affecting protein-coding genes derived from exome data of patients with common forms of genetic epilepsies. We analysed exomes from 390 European patients (196 GGE and 194 RE) and 572 population controls to identify low-frequency genic deletions. We found that 75 (32 GGE and 43 RE) patients out of 390, i.e. ~19%, carried rare genic deletions. In particular, large deletions (>400 kb) represent a higher burden in both GGE and RE syndromes as compared to controls. The detected low-frequency deletions (1) share genes with brain-expressed exons that are under negative selection, (2) overlap with known autism and epilepsy-associated candidate genes, (3) are enriched for CNV intolerant genes recorded by the Exome Aggregation Consortium (ExAC) and (4) coincide with likely disruptive de novo mutations from the NPdenovo database. Employing several knowledge databases, we discuss the most prominent epilepsy candidate genes and their protein-protein networks for GGE and RE.


Epilepsy, Rolandic/genetics , Gene Deletion , Genetic Association Studies , Genetic Predisposition to Disease , Autistic Disorder/genetics , Autistic Disorder/metabolism , Chromosome Deletion , Comparative Genomic Hybridization , DNA Copy Number Variations , Epilepsy, Generalized/genetics , Epilepsy, Rolandic/metabolism , Exome , Genetic Association Studies/methods , Humans , Mutation , Protein Interaction Mapping , Protein Interaction Maps , Reproducibility of Results , Workflow
20.
Sci Rep ; 8(1): 10294, 2018 Jul 03.
Article En | MEDLINE | ID: mdl-29967434

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

...