Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 17(1): 80, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877488

RESUMEN

To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 µmol) and catechol (100 µmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.

2.
Chemosphere ; 351: 141208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219986

RESUMEN

Plastics are indispensable in modern society but also pose a persistent threat to the environment. In particular, microplastics (MPs) have a substantial environmental impact on ecosystems. Municipal solid waste landfill leachates are a source of MPs, but leakage of MPs from leachates has only been reported in a few studies. As a modern city, Hong Kong has a remarkably high population density and a massive plastic waste generation. However, it depends on conventional landfilling for plastic waste management and traditional thermal ammonia stripping for leachate treatment. Yet, the MP leakage from landfill leachates in Hong Kong has not been disclosed. This is the first study that aimed to identify, quantify, and characterise MPs in raw and treated leachates, respectively, from major landfill sites in Hong Kong. The concentrations of MPs varied from 49.0 ± 24.3 to 507.6 ± 37.3 items/L among the raw leachate samples, and a potential correlation was found between the concentration of MPs in the raw leachate sample from a given landfill site and the annual leachate generation of the site. Most MPs were 100-500 µm fragments or filaments and were transparent or yellow. Regarding the polymeric materials among the identified MPs, poly(ethylene terephthalate) and polyethylene were the most abundant types, comprising 45.30% and 21.37% of MPs, respectively. Interestingly, leachates treated by ammonia stripping contained higher concentrations of MPs than raw leachate samples, which demonstrated that the traditional treatment process may not be sufficient regarding the removal of emerging pollutants, such as MPs. Overall, our findings provide a more comprehensive picture of the pollution of MPs in landfill leachates in Hong Kong and highlight the urgent need for adopting the consideration of MPs into the conventional mindset of waste management systems in Hong Kong.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Hong Kong , Amoníaco , Ecosistema , Instalaciones de Eliminación de Residuos , China
3.
Environ Pollut ; 344: 123387, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242308

RESUMEN

This communication explores the intricate relationship between food waste and climate change, considering aspects such as impacts, projections, and emissions. It focuses on the pressing issue of waste generation and its potential consequences if current trends persist, and emphasises the importance of efficient solid waste management in improving environmental quality and fostering economic development. It also highlights the challenges faced by developing countries in waste collection and disposal, drawing comparisons with the waste utilisation methods used by developed nations. The review delves into the link between food waste and climate change, noting the paradoxical situation of food wastage against the backdrop of global hunger and malnutrition. It underscores the scientific evidence connecting food waste to climate change and its implications for food security and climate systems. Additionally, it examines the environmental burden imposed by food waste, including its contribution to greenhouse gas emissions and the depletion of resources such as energy, water, and land. Besides environmental concerns, this communication also highlights the ethical and socioeconomic dimensions of food waste, discussing its influence on Sustainable Development Goals, poverty, and social inequality. The communication concludes by advocating for collective action and the development of successful mitigation strategies, technological solutions, and policy interventions to address food waste and its climate impacts. It emphasises the need for collaboration, awareness, and informed decision-making to ensure a more sustainable and equitable future.


Asunto(s)
Cambio Climático , Eliminación de Residuos , Alimentos , Alimento Perdido y Desperdiciado , Uniones Comunicantes
4.
Opt Express ; 31(20): 31768-31779, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37858994

RESUMEN

This paper introduces a surface plasmon resonance (SPR) sensor using tapered silica fiber and photopolymer coating for enhanced refractive index (RI) detection. Tapering the silica fiber to a diameter of 10 µm ensures the evanescent wave leaks into a 1.8-µm thick photopolymer film, which increases the average waveguide RI and broadens the RI detection range accordingly. A 50-nm thick single-side gold film is coated on the photopolymer film, exciting SPR and causing less light transmission loss than a double-side gold film. The method avoids the complex microfabrication processes of conventional polymer optical fiber SPR sensors, while the waveguide RI can be controlled by altering the curing time of the photopolymer during fabrication. The sensor has an overall sensitivity of 3686.25 nm/RIU, enabling RI detection of 1.333 - 1.493. Moreover, the sensor has an ultrahigh sensitivity of 6422.9 nm/RIU in the RI range of 1.423 - 1.493. The temperature response is about 1.43 nm/°C at 20 - 50 °C, which has little impact on RI detection. Finally, we demonstrate that the sensor can grade the severity of hepatic steatosis by measuring the RIs of cytoplasm/triglyceride emulsions with superior sensing performance.

5.
ACS Sens ; 8(11): 4171-4178, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37861795

RESUMEN

Respiration is essential for supporting human body functions. However, a biocompatible fiber respiration sensor has rarely been discussed. In this study, we propose a wearable fiber surface plasmon resonance (SPR) respiration sensor using a LiBr-doped silk fibroin (SF) film. The SPR sensor monitors respiration by responding to airway humidity variation during inhalation and exhalation. We fabricated the SPR respiration sensor by depositing the core of a plastic-clad optical fiber with a gold film and an SF-LiBr composite film. The SF-LiBr composite film can absorb water through the interaction between water molecules and hydrogen bonds linking fibroin chains. Thus, humidity variation can change the SF-LiBr composite film's refractive index (RI), altering the phase-matching condition of the surface plasmon polaritons and shifting the SPR spectral dip. In experiments, we test the effect of the LiBr doping ratio on humidity response and confirm that the SF-22.1 wt % LiBr sensor has balanced performances. The SF-22.1 wt % LiBr sensor has a broad sensing range of 35-99% relative humidity (RH), a reasonable overall sensitivity of -6.5 nm/% RH, a fast response time of 135 ms, a quick recovery time of 150 ms, good reversibility, and good repeatability, which is capable of tracking different respiration states and patterns. Finally, we encapsulate this sensor in a conventional nasal oxygen cannula for wearable respiration monitoring, proving that the sensor is suitable for high-sensitivity, real-time, and accurate respiration monitoring.


Asunto(s)
Fibroínas , Dispositivos Electrónicos Vestibles , Humanos , Resonancia por Plasmón de Superficie , Respiración , Agua
6.
Opt Lett ; 48(14): 3641-3644, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37450714

RESUMEN

This paper presents a novel fiber liquid-pressure sensor that uses photopolymer glue to generate Fabry-Perot (F-P) interference, resulting in high sensitivity and a wide measurement range. The sensor comprises a single-mode fiber and photopolymer glue; the latter adheres to the fiber's end face and is decomposed by a 405-nm laser to create an air channel with a diameter of 5.9 µm and a length of 50 µm. When the air channel is placed underwater, a 17.5-µm air cavity forms between the fiber core and the air-liquid boundary due to the pressure balance, creating an F-P interferometer. Based on experimental results, the sensor has an average pressure sensitivity of 5.68 nm/kPa over 0.49-2.94 kPa. The sensitivity can be maintained at this level across different pressure measurement ranges (up to about 500 kPa) by using a 980-nm laser's radiation pressure to reset the air-liquid boundary. Besides its high sensitivity and wide measurement range, the sensor's straightforward structure, durability, affordability, compactness, and simple construction make it an appealing choice for liquid pressure measurement applications in various fields.

7.
Environ Int ; 164: 107228, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35468407

RESUMEN

Phosphorus (P) chemistry and its dynamic cycling are essential for understanding aquatic primary productivity and ecosystem structure. However, there is a lack of knowledge on P chemistry in pristine aquatic ecosystems, such as in Antarctica. Here, we applied the Standards, Measurements and Testing Program (SMT) procedure and nuclear magnetic resonance spectroscopy (NMR) to reveal P speciation in two types of lacustrine sediment cores collected from Inexpressible Island, Ross Sea, East Antarctica. The Positive Matrix Factorization Model and Generalized Additive Models were applied to quantitatively identify the P sources and estimate relative effects of various environmental factors on the speciation. Our results demonstrate that orthophosphate, mainly as Ca-P, is the major component and the ortho-monoesters are the predominant organic phosphorus (OP) form in lacustrine sediments. Ornithogenic lacustrine sediments have a higher content of P as Ca-P than sediments with little or no penguin influence. Our model further suggests that penguin guano is the most important source for Ca-P, accounting for 80%, while detrital input is the predominant source for Fe/Al-P (up to 90%). The content of ortho-monoesters, as revealed by NMR, declines with depth, reflecting mineralization process of OP in the sediments. Moreover, we observed higher relative proportions of organic P in the sediments with little guano influence and the deposition of organic P are likely facilitated by microbial mats. Overall, our data suggest that burial of P in Antarctic lakes is sensitive to different P sources and sedimentary environments. The relatively higher bioavailable phosphorus in lacustrine sediments largely controls growth of aquatic microbial mats in oligotrophic lakes and ponds in Antarctica. The sediment profile data also indicate that P burial increased during the Medieval Climate Anomaly period, and climate warming is more conducive to P burial through the expansion of penguin populations and productivity of microbial mats. Our findings represent the first systematic understanding of natural P cycling dynamics and its main controlling factors in pristine ponds with different organic sources in Antarctica.


Asunto(s)
Spheniscidae , Contaminantes Químicos del Agua , Animales , Regiones Antárticas , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos/química , Lagos/química , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
8.
J Agric Food Chem ; 70(15): 4677-4689, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35384649

RESUMEN

The unicellular freshwater green alga Haematococcus pluvialis has attracted much research attention due to its biosynthetic ability for large amounts of astaxanthin, a blood-red ketocarotenoid that is used in cosmetics, nutraceuticals, and pharmaceuticals. Recently, numerous studies have investigated the functions of natural astaxanthin; however, the high cost of the production of astaxanthin from H. pluvialis cultures restricts its commercial viability. There is an urgent need to fulfill commercial demands by increasing astaxanthin accumulation from H. pluvialis cultures. In this study, we discovered that treatment of H. pluvialis cultures at the beginning of the macrozooid stage (day 0) with 1 µM rac-GR24, a synthetic analogue of strigolactones (a class of phytohormones), led to significant increases in biomass [up to a maximum dry cell weight (DCW) of 0.53 g/L] during the macrozooid stage and astaxanthin (from 0.63 to 5.32% of DCW) during the hematocyst stage. We elucidated that this enhancement of biomass accumulation during the macrozooid stage by rac-GR24 is due to its increasing CO2 utilization efficiency in photosynthesis and carbohydrate biosynthesis. We also found that rac-GR24 stimulated the overproduction of nicotinamide adenine dinucleotide phosphate (NADPH) and antioxidant enzymes in H. pluvialis cultures, which alleviated the oxidative damage caused by reactive oxygen species generated during the hematocyst stage due to the exhaustion of nitrogen supplies. Moreover, rac-GR24 treatment of H. pluvialis synergistically altered the activity of the pathways of fatty acid biosynthesis and astaxanthin esterification, which resulted in larger amounts of astaxanthin being generated by rac-GR24-treated cultures than by controls. In summary, we have developed a feasible and economic rac-GR24-assisted strategy that increases the amounts of biomass and astaxanthin generated by H. pluvialis cultures, and have provided novel insights into the mechanistic roles of rac-GR24 to achieve these effects.


Asunto(s)
Chlorophyceae , Biomasa , Suplementos Dietéticos , Xantófilas
9.
J Hazard Mater ; 423(Pt A): 127023, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34482075

RESUMEN

Due to the recent boom in urbanisation, economy, and global population, the amount of waste generated worldwide has increased tremendously. The World Bank estimates that global waste generation is expected to increase 70% by 2050. Disposal of waste is already a major concern as it poses risks to the environment, human health, and economy. To tackle this issue and maximise potential environmental, economic, and social benefits, waste valorisation - a value-adding process for waste materials - has emerged as a sustainable and efficient strategy. The major objective of waste valorisation is to transit to a circular economy and maximally alleviate hazardous impacts of waste. This review conducts bibliometric analysis to construct a co-occurrence network of research themes related to management of five major waste streams (i.e., food, agricultural, textile, plastics, and electronics). Modern valorisation technologies and their efficiencies are highlighted. Moreover, insights into improvement of waste valorisation technologies are presented in terms of sustainable environmental, social, and economic performances. This review summarises highlighting factors that impede widespread adoption of waste valorisation, such as technology lock-in, optimisation for local conditions, unfavourable regulations, and low investments, with the aim of devising solutions that explore practical, feasible, and sustainable means of waste valorisation.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Alimentos , Humanos , Plásticos , Residuos
10.
Bioresour Technol ; 345: 126564, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34915115

RESUMEN

Phaeodactylum tricornutum, a model alga, is well known for its ability to accumulate intracellular omega-3 eicosapentaenoic acid (EPA). However, P.tricornutum cells need to have a higher EPA content if they are to be used for industrial applications. In this study, an auxin-like supermolecule (SM) was synthesised and used for the cultivation of P. tricornutum. Results show that the addition of 1 ppm of SM significantly increased the P. tricornutum cell density and boosted the P. tricornutum biomass. The experimental group treated with 5 ppm of SM, had an EPA content of 31.7%, which was a 2.09-fold increase over the EPA content in the untreated group. Overall, our results demonstrated that SM can significantly improve the microalgal growth and EPA accumulation in P. tricornutum, providing a feasible strategy to achieve efficient and cost-effective EPA production.


Asunto(s)
Diatomeas , Microalgas , Biomasa , Ácido Eicosapentaenoico , Ácidos Indolacéticos
11.
ChemSusChem ; 14(19): 3981, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34519414

RESUMEN

Invited for this month's cover is the collaborative group of Dr. Carol Sze Ki Lin and Dr. Xiang Wang. The image illustrates the biodegradation of plastics and the potential for plastic waste recycling and valorization to address the plastic waste dilemma. The Minireview itself is available at 10.1002/cssc.202100752.

12.
Bioresour Technol ; 340: 125672, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34352642

RESUMEN

In this study, the ability of Yarrowia lipolytica to produce the recombinant lipase CalB from Candida antarctica, used as a model protein has been compared across different bioreactor processes using glycerol, a byproduct from the biodiesel industry as the main carbon source. Batch, pulsed fed-batch (PFB), and continuous fed-batch (CFB) strategies were first compared using classical stirred tank (STR) bioreactors in terms of biomass production, carbon source uptake, and lipase production. Additionally, an in situ fibrous bed bioreactor (isFBB) was developed using sugarcane bagasse as a cell immobilization support. The maximum lipase titer achieved using the isFBB culture mode was 38%, 33%, and 49% higher than those obtained using the batch, PFB, and CFB cultures, respectively. The lipase productivity in isFBB mode (142U/mL/h) was 1.4-fold higher than that obtained using batch free cell cultures. These results highlight that isFBB is an efficient technology for the production of recombinant enzymes.


Asunto(s)
Yarrowia , Basidiomycota , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Proteínas Recombinantes
13.
ChemSusChem ; 14(19): 4103-4114, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34137191

RESUMEN

Although fossil-based plastic products have many attractive characteristics, their production has led to severe environmental burdens that require immediate solutions. Despite these plastics being non-natural chemical compounds, they can be degraded and metabolized by some microorganisms, which suggests the potential application of biotechnologies based on the mechanism of plastic biodegradation. In this context, microbe-based strategies for the degradation, recycling, and valorization of plastic waste offer a feasible approach for alleviating environmental challenges created by the accumulation of plastic waste. This Minireview highlights recent advances in the biotechnology-based biodegradation of both traditional polymers and bio-based plastics, focusing on the mechanisms of biodegradation. From an application perspective, this Minireview also summarizes recent progress in the recycling and valorization of plastic waste, which are feasible solutions for tackling the plastic waste dilemma.

14.
J Hazard Mater ; 400: 123258, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947693

RESUMEN

Bioconversion of food waste into value-added products is a promising way to tackle the global food waste management problem. In this study, a novel valorisation strategy for bioenergy and lutein production via microalgal fermentation was investigated. Significant amount of glucose was recovered from enzymatic hydrolysis of food waste. The resultant hydrolysate was then utilised as culture medium in mixotrophic cultivation of Chlorella sp. to obtain high levels of lipid and lutein, whose accumulation patterns were consistent with molecular analyses. The resultant algal lipid derived from microalgal biomass using food hydrolysate was at high quality in terms of biodiesel properties. Further, in semi-continuous fermentation, the average algal biomass was 6.1 g L-1 with 2.5 g L-1 lipid and 38.5 mg L-1 lutein using hydrolysate with an initial glucose concentration of 10 g L-1. Meanwhile, the resultant algal biomass was 6.9 g L-1 with 1.8 g L-1 lipid and 63.0 mg L-1 lutein using hydrolysate with an initial glucose concentration of 20 g L-1, which suggests food waste hydrolysate could trigger algal products preferences. The experimental results of this study suggested the potential of microalgae as a platform for bioconversion of food waste into high-value products, especially sustainable bioenergy.


Asunto(s)
Chlorella , Microalgas , Eliminación de Residuos , Biomasa , Fermentación , Alimentos , Lípidos , Luteína
15.
Bioresour Technol ; 291: 121898, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31395402

RESUMEN

With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.


Asunto(s)
Carbohidratos , Lignina , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...