Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Total Environ ; 836: 155643, 2022 Aug 25.
Article En | MEDLINE | ID: mdl-35513148

Soil Aquifer Treatment (SAT) can provide supplementary treatment of trace organic compounds (TrOCs) such as pharmaceutical and industrial compounds present in Secondary Treated Wastewater (STWW). Concern on presence of unregulated TrOCs in natural systems has raised recently as well as the interest in SAT systems for remediation. The present study quantifies, at the field scale over35 m of lateral groundwater flow, the effectiveness of the Agon-Coutainville SAT system (Manche, Normandy, France) for TrOCs removal by sorption and biodegradation through monitoring of seven TrOCs (oxazepam, carbamazepine, benzotriazole, tolyltriazole, caffein, paracetamol, ibuprofen) and major inorganic compounds as intrinsic tracers in STWW and groundwater during a 34-day STWW infiltration experiment during operational use of the SAT. Cationic exchanges and mixing between groundwater and STWW during the experiment were highlighted by major ions and geochemical simulations. Due to the low thickness of the unsaturated zone, a 1D analytical solution of the advection-dispersion equation (ADE) was applied on chloride data. Chloride was used as conservative intrinsic tracer to calibrate the horizontal flow and transport parameters such as the aquifer dispersion coefficient (D) and the average pore water velocity (ν) allowing estimation of the groundwater residence time. Transport and attenuation of the TrOCs were simulated assuming first-order degradation constant (µ) and linear retardation coefficient (R), calibrated to simulate the observed temporal changes in the breakthrough of TrOCs. Sorption was found to play a role in the transport of TrOCs, notably for oxazepam with a higher linear retardation coefficient value of 2.2, whereas no significant differences of retardation were observed for carbamazepine, tolyltriazole, benzotriazole (1.37, 1.35, 1.36 respectively). Estimated first order degradation rate constants, between 0.03d-1 for carbamazepine and 0.09d-1 for tolyltriazole, were generally high compared to the literature, possibly due to favourable redox conditions and important microbial activities within the system. This study provides evidence of the efficiency of the Agon-Coutainville SAT system for the removal of TrOCs.


Groundwater , Water Pollutants, Chemical , Carbamazepine , Chlorides , Felodipine , Groundwater/chemistry , Organic Chemicals , Oxazepam , Soil/chemistry , Wastewater/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 810: 152213, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34896511

SARS-CoV-2 is a coronavirus causing a globalized outbreak called COVID-19. SARS-CoV-2 transmission is associated with inhalation of contaminated respiratory droplets and could causes severe complications. Until today several "waves" of infections have been observed despite implementation of strict health policies. Decisions for such sanitary measures are based on population health monitoring. Unfortunately, for COVID-19, a significant proportion of individuals are asymptomatic but play a role in the virus transmission. To overcome these limitations, several strategies were developed including genome quantification in wastewater that could allow monitoring of the health status of population, since shedding of SARS-CoV-2 in patient stool is frequent. Wastewater-based epidemiology (WBE) was established and several countries implemented this approach to allow COVID-19 outbreak monitoring. In France, the OBEPINE project performed a quantitative analysis of SARS-CoV-2 in raw wastewater samples collected from major wastewater treatment plants (WWTP) since March 2020. In the greater Paris area 1101 samples (507 for five WWTP and 594 for sewer) were collected. This 16 months monitoring allows us to observe the outbreak dynamics. Comparison of WBE indicators with health data lead to several important observation; the good level of correlation with incidence rates, the average 3 days lead time, and the sensitivity (WBE change when incidence is > to 7/100000 inhabitants). We also compared the local monitoring (city level) with the regional monitoring, to help cluster identification. Moreover, variants of concern (VOC) emerged due to the selection pressure. We developed a specific RT-qPCR method targeting the deletion H69-V70 in the spike protein, using this deletion as a proxy of the B.1.1.7 presence in the wastewater. With this data we demonstrate the predominant role played by this strain in the third wave. All these results allow a better description and understanding of the pandemic and highlight the role of such WBE indicators.


COVID-19 , SARS-CoV-2 , Disease Outbreaks , Humans , Respiratory Aerosols and Droplets , Wastewater
3.
Water Res ; 198: 117183, 2021 Jun 15.
Article En | MEDLINE | ID: mdl-33962244

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.


COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , RNA, Viral , Risk Assessment , SARS-CoV-2 , Wastewater
4.
Euro Surveill ; 25(50)2020 12.
Article En | MEDLINE | ID: mdl-33334397

IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease (COVID-19). People infected with SARS-CoV-2 may exhibit no or mild non-specific symptoms; thus, they may contribute to silent circulation of the virus among humans. Since SARS-CoV-2 RNA can be detected in stool samples, monitoring SARS-CoV-2 RNA in waste water (WW) has been proposed as a complementary tool to investigate virus circulation in human populations.AimTo test if the quantification of SARS-CoV-2 genomes in WW correlates with the number of symptomatic or non-symptomatic carriers.MethodWe performed a time-course quantitative analysis of SARS-CoV-2 by RT-qPCR in raw WW samples collected from several major WW treatment plants in Greater Paris. The study period was 5 March to 23 April 2020, including the lockdown period in France (from 17 March).ResultsWe showed that the increase of genome units in raw WW accurately followed the increase of human COVID-19 cases observed at the regional level. Of note, the viral genome could be detected before the epidemic grew massively (around 8 March). Equally importantly, a marked decrease in the quantities of genome units was observed concomitantly with the reduction in the number of new COVID-19 cases, 29 days following the lockdown.ConclusionThis work suggests that a quantitative monitoring of SARS-CoV-2 genomes in WW could generate important additional information for improved monitoring of SARS-CoV-2 circulation at local or regional levels and emphasises the role of WW-based epidemiology.


COVID-19/epidemiology , Communicable Disease Control/methods , Genome, Viral , Physical Distancing , Quarantine , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Virus Shedding , Wastewater/virology , COVID-19/transmission , Communicable Disease Control/statistics & numerical data , France , Humans , Paris/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Viral Load
5.
J Appl Microbiol ; 126(1): 332-343, 2019 Jan.
Article En | MEDLINE | ID: mdl-30099824

AIMS: The purpose of this work is to present and evaluate the performance of a novel Automatic Lab-in-vial Escherichia coli Remote Tracking technology based on an automated real-time defined substrate approach, implemented in both portable and in situ instruments. METHODS AND RESULTS: We present the fresh water calibration procedure, and assess performance using side-by-side comparison with most probable number (MPN) approaches in terms of accuracy, reproducibility and capability to correctly generate early-warning alerts. Long-term data from an operational in situ deployment at a potential bathing site is presented as well. CONCLUSIONS: Automatic Lab-in-vial Escherichia coli Remote Tracking technology is shown to be an accurate and rapid bacterial quantification technology, capable of autonomous in situ measurements with metrological capabilities comparable to those of an approved laboratory using MPN microplate techniques. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid quantification of bacterial pollution is a requirement in water quality applications ranging from recreational water use, agriculture and aquaculture to drinking and wastewater treatment. The method and instruments presented in this work should enable fast and accurate bacterial concentration measurements to be performed in a portable or in situ manner, thus simplifying operational logistics, reducing time-to-result delays, and eliminating sample transportation constraints associated with traditional techniques.


Automation, Laboratory/methods , Environmental Monitoring/methods , Escherichia coli/isolation & purification , Fresh Water/microbiology , Water Quality , Reproducibility of Results
6.
Environ Sci Pollut Res Int ; 25(24): 23468-23484, 2018 Aug.
Article En | MEDLINE | ID: mdl-27392629

River quality trajectories are presented for (i) organic pollution, (ii) eutrophication, (iii) nitrate pollution, and (iv) metal contamination over the Longue Durée (130 to 70 years). They are defined by a quantified state indicator (S) specific to each issue, compared to drivers (D) or pressures (P) and to social responses (R) that reflect the complex interactions between society and river quality. The Lower Seine River, naturally sensitive to anthropogenic pressures, greatly impacted by Paris urban growth, industrialization, and intensive agriculture, and well documented by the PIREN-Seine 25-year research program, was chosen to illustrate these trajectories. State indicators, dissolved oxygen, algal pigments, nitrate, and heavy metals (Cd, Cr, Hg, Pb, Zn) in sediments have only been monitored by river basin authorities since 1971. Therefore, their past changes have been reconstructed using three approaches: (i) reassessment of historical sources, (ii) pressure-state models that reconstruct past water quality, and (iii) sedimentary archives of past persistent contamination from dated floodplain cores. The indicators were then transformed into river quality status using contemporary water quality criteria throughout these records. Each environmental issue shows specific trajectories because each has its own relationship between the issue evidence and the social response, but all are characterized by very poor quality in the past, largely ignored: the long-term summer hypoxia (<1880-1995), the summer eutrophication peak (1965-2005), the growing nitrate level since the 1950s, recently stabilized but still high, and the extreme metal contamination (>1935-2000) that peaked in the 1960s. The efficiency of social responses has been highly variable but more efficient in the last 15-25 years.


Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Quality , Agriculture , Environmental Monitoring , Eutrophication , Geologic Sediments/analysis , Geologic Sediments/chemistry , Metals, Heavy/analysis , Nitrates/analysis , Paris , Seasons
7.
Water Sci Technol ; 60(12): 3173-9, 2009.
Article En | MEDLINE | ID: mdl-19955641

Similar evolution was obtained for the stable carbon isotope signatures delta (13)CH(4) and the model-predicted relative rate of aceticlastic methanogenesis during mesophilic methanization of municipal solid wastes. In batch incubations, the importance of aceticlastic and hydrogenotrophic methanogenesis changes in time. Initially, hydrogenotrophic methanogenesis dominated, but increasing population of Methanosarcina sp. enhances aceticlastic methanogenesis. Later, hydrogenotrophic methanogenesis intensified again. A mathematical model was developed to evaluate the relative contribution of hydrogenotrophic and aceticlastic pathways of methane generation during mesophilic batch anaerobic biodegradation of the French and the Chinese Municipal Solid Wastes (FMSW and CMSW). Taking into account molecular biology analysis reported earlier three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H(2)/H(2)CO(3) were considered in the model. The total organic and inorganic carbon concentrations, methane production volume, methane and carbon dioxide partial pressures values were used for the model calibration and validation. Methane isotopic composition (delta (13)CH(4)) evolution during the incubations was used to independently validate the model results. The model demonstrated that only the putrescible solid waste was totally converted to methane.


Acetates/chemistry , Methane/analysis , Methanosarcinales/growth & development , Models, Theoretical , Refuse Disposal/methods , Anaerobiosis , Biodegradation, Environmental , Carbon Isotopes/analysis , China , France
8.
Sci Total Environ ; 375(1-3): 168-79, 2007 Apr 01.
Article En | MEDLINE | ID: mdl-17258293

This study establishes an annual watershed (12,762 km(2)) budget of pesticide contamination in the Marne River based on detailed enquiries from farmers' organizations, public services and residents and pesticide usage. Results showed that urban uses were considerably lower (47 tons/yr) than agricultural ones (4300 tons/yr). However, the proportion of the amounts used transferred to surface water, differs considerably between urban and agricultural environments. Transfer from urban uses was estimated from runoff experiments with different surfaces, including concrete, tarmac, sand and gravel, and grass. Transfer coefficients from agricultural uses were derived from the calibrated value previously obtained from a detailed budget established for atrazine, taking into account the specific adsorption capacity (Koc) and half-life time of each substance used. The calculated annual budget shows a similar contribution by urban pesticides in the Marne River due to runoff over impervious surfaces as compared to agricultural pesticides used on cultivated soils (about 11 tons/yr in both cases). These estimates are consistent with data available from analytical surveys concerning pesticide occurrence in the rivers of the Paris region.


Agriculture , Environmental Monitoring/methods , Pesticides/analysis , Rivers/chemistry , Urbanization , Water Pollutants, Chemical/analysis , Agriculture/standards , France , Urbanization/trends , Water Supply/standards
9.
Water Sci Technol ; 54(6-7): 441-50, 2006.
Article En | MEDLINE | ID: mdl-17120679

An alternative definition of risk is proposed as risk being a function of the hazard, which is related to the risk source and the vulnerability, which is related to the risk object. The same hazard will not cause the same effect on all risk objects. Therefore, vulnerability is introduced as a system-dependent property to be the link between the hazard and the effect so that the combination of the occurrence of a hazard and the vulnerability of an object results in the effect. In risk communication indicators are helpful since they help to simplify the message that has to be communicated. Three examples (pluvial flooding of sewers, dissolved oxygen depletion in streams and discharge of chemicals to receiving waters) show that dependent on the risk problem possibilities for risk reduction lies either at the risk source or at the risk object. Therefore, it is important to have indicators that can be used when the possibilities of risk reduction are analysed.


Cities , Drainage, Sanitary , Water Supply , Protective Devices , Risk Assessment , Sewage
10.
Sci Total Environ ; 334-335: 251-60, 2004 Dec 01.
Article En | MEDLINE | ID: mdl-15504512

The control and treatment of urban and highway runoff involves a variety of stakeholders in the selection of sustainable drainage systems (SUDS) as the design process needs to consider not only water quantity but also water quality and amenity. Thus, technical, environmental/ecological, social/community and economic cost factors become prime potential sustainability criteria in terms of assessing long-term, cost-effective drainage options. The paper develops a multicriteria analysis methodology for the evaluation and accreditation of SUDS structures within the context of an overall decision-support framework. Approaches independently developed in the UK and France are outlined with the common multicriteria structures defining generic performance criteria together with supporting benchmark standards and exclusion thresholds. A French case study is presented to illustrate the approach and to highlight the inherent constraints and subjectivity embedded in the decision-making process.


Decision Making , Environment , Vehicle Emissions/prevention & control , Waste Disposal, Fluid , Water Pollution/prevention & control , Benchmarking , Cost-Benefit Analysis , Ecology , France , Policy Making , Social Conditions , Water Movements , Water Pollution/economics
11.
Sci Total Environ ; 235(1-3): 211-20, 1999 Sep 01.
Article En | MEDLINE | ID: mdl-10535121

Urban surface contamination, by atmospheric deposits as well as human activities, is a major concern for urban pollution management. Besides coarse street deposits which are clearly perceived and easily removed, suspended solid (SS) surface loads and contamination by heavy metals and hydrocarbons are rarely assessed although they could be of major importance with regards to combined or separate server overflow (CSO and SSO) impacts. Both dry and wet vacuum sampling procedures have been first compared, in the laboratory, using dry and sieved clay or street deposits. Then the wet vacuum sampling procedure has been refined, coupling the injection of water and the hand-brushing of the surface prior to its vacuum cleaning, and evaluated on a car parking area close to the University. Finally this procedure has been assessed in Béarn Street within the 'Le Marais' district in Paris centre, and 34 samples have been analysed for metal and eight for aromatic hydrocarbon contamination. Heavy metal concentrations (0.1-1.7 g kg-1 dry wt. Cu, 0.9-6.1 g kg-1 dry wt. Pb and 1.5-4.6 g kg-1 dry wt. Zn) within street deposit samples collected in Paris centre, indicate a high contamination, especially for copper and zinc, as compared to reported data. Total polyaromatic hydrocarbons (PAHs) are in the 3-11 mg kg-1 dry wt. range, thus approximately 10 times less contaminated than dry atmospheric deposits. This paper presents data obtained and discusses the difficulties encountered when sampling street deposits in busy areas of a city like Paris. The water jet street cleaning procedure used by Paris city workers was tested for its efficiency, by comparison of surface loads before and after the cleaning procedure. Although solids cleaning efficiency is highly variable (20-65%) and somewhat higher for particles larger than 100 microns, particulate metal cleaning efficiency is even more variable (0-75%) and particulate PAHs appear not to be significantly removed.


Environmental Pollutants/analysis , Hydrocarbons, Aromatic/analysis , Metals/analysis , Humans , Methods , Motor Vehicles , Paris , Reproducibility of Results , Urban Health , Vacuum , Vehicle Emissions/analysis
12.
Environ Pollut ; 101(1): 107-16, 1998.
Article En | MEDLINE | ID: mdl-15093103

The toxic effect of a combined sewer overflow (CSO) on the phytoplankton community of the river Seine has been studied by means of short-term primary production measurements. As the discharged solids usually do not remain in the water column, only filtered or centrifugated fractions were tested. The collected phytoplankton were grown in the laboratory for 2 days, after addition of N, P and EDTA. Stock cultures in exponential growth were directly tested with heavy metals, but resuspended algal cells were used for effluent testing. The results show an increase of EC50 value for the single metal species in the order Cu<

...