Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38832748

RESUMEN

Methane is considered to be a cubic structure I (CS-I) clathrate hydrate former, although in a number of instances, small amounts of structure II (CS-II) clathrate hydrate have been transiently observed as well. In this work, solid-state magic angle spinning 13C NMR spectra of methane hydrate formed at low temperatures inside silica-based nanoporous materials with pores in the range of 3.8-20.0 nm (CPG-20, Vycor, and MCM-41) show methane in several different environments. In addition to methane encapsulated in the dodecahedral 512 (D) and tetrakaidecahedral 51262 (T) cages typical of the CS-I clathrate hydrate phase, methane guests in pentakaidecahedral 51263 (P) and hexakaidecahedral 51264 (H) cages are also identified, and these appear to be stabilized for extended periods of time. The ratio of methane guests among the D and T cages determined from the line intensities is significantly different from that of bulk CS-I samples and indicates that both CS-I and CS-II are present as the dominant species. This is the first observation of methane in P cages, and the possible structures in which they could be present are discussed. Broad and relatively strong methane peaks, which are also observed in the spectra, can be related to methane dissolved in an amorphous component of water adjacent to the pore walls. Nanoconfinement and interaction with the pore walls clearly have a strong influence on the hydrate formed and may reflect species present in the early stages of hydrate growth.

2.
Small ; : e2308939, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037759

RESUMEN

A sophisticated comprehension of the impacts of photoisomerization and photothermal phenomena on biogenic and responsive materials can provide a guiding framework for future applications. Herein, the procedure to manufacture homogeneous chitosan-based smart thin films are reported by incorporating the light-responsive azobenzene-derivative Sodium-4-[(4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)diazen-yl]-benzenesulfonate (TEGABS) in the biopolymer through electrostatic interactions. When irradiated with UV-light the TEGABS/chitosan films show a biresponse, comprising the E→Z photoisomerization with a half-life of 13 - 20 h and the light-induced evaporation of residual moisture leading to an increase in the reduced indentation modulus (up to 49%) and hardness. Freestanding films of TEGABS/chitosan show actuation up to 13° while irradiated with UV-light. This work shows the potential of biogenic polysaccharides in the design of biresponsive materials with photomodulated mechanical properties and unveils the link between the humidity of the environment, residual moisture, and the photomodulation of the mechanical properties.

3.
Inorg Chem ; 62(27): 10655-10664, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37382207

RESUMEN

The structure of the first lithium-containing bismuth ortho (o)-thiophosphate was determined using a combination of powder X-ray, neutron, and electron diffraction. Li60-3xBi16+x(PS4)36 with x in the range of 4.1-6.5 possesses a complex monoclinic structure [space group C2/c (No. 15)] and a large unit cell with the lattice parameters a = 15.4866 Å, b = 10.3232 Å, c = 33.8046 Å, and ß = 85.395° for Li44.4Bi21.2(PS4)36, in agreement with the structure as observed by X-ray and neutron pair distribution function analysis. The disordered distribution of lithium ions within the interstices of the dense host structure and the Li ion dynamics and diffusion pathways have been investigated by solid-state nuclear magnetic resonance (NMR) spectroscopy, pulsed field gradient NMR diffusion measurements, and bond valence sum calculations. The total lithium ion conductivities range from 2.6 × 10-7 to 2.8 × 10-6 S cm-1 at 20 °C with activation energies between 0.29 and 0.32 eV, depending on the bismuth content. Despite the highly disordered nature of lithium ions in Li60-3xBi16+x(PS4)36, the underlying dense host framework appears to limit the dimensionality of the lithium diffusion pathways and emphasizes once more the necessity of a close inspection of the structure-property relationships in solid electrolytes.

4.
Phys Chem Chem Phys ; 24(34): 20198-20209, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35950323

RESUMEN

Specific aspects of the Li+ cation conductivity of anhydrous Li(SCN) are investigated, in particular the high migration enthalpy of lithium vacancies. Close inspection of impedance spectra and conductivity data reveals two bulk relaxation processes, with comparatively fast ion transport at high frequencies and slow ion migration at low frequencies. The impedance results are supported by solid state nuclear magnetic resonance (ssNMR), and pair distribution function (PDF) analysis. This behavior reflects a frequency dependent conductivity, which is related to the extremely slow thiocyanate (SCN)- anion lattice relaxation that occurs when a Li+ cation jumps to the next available site. Two possible migration models are proposed: the first model considers an asymmetric energy landscape for Li+ cation hopping, while the second model is connected to the jump relaxation model and allows for 180° rotational disorder of the (SCN)- anion. A complete kinetic analysis for the hopping of Li+ cations is presented, which reveals new fundamental insights into the ion transport mechanism of materials with complex anions.

5.
Adv Mater ; 34(7): e2107061, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34870342

RESUMEN

Carbon nitrides are among the most studied materials for photocatalysis; however, limitations arise from inefficient charge separation and transport within the material. Here, this aspect is addressed in the 2D carbon nitride poly(heptazine imide) (PHI) by investigating the influence of various counterions, such as M = Li+ , Na+ , K+ , Cs+ , Ba2+ , NH4 + , and tetramethyl ammonium, on the material's conductivity and photocatalytic activity. These ions in the PHI pores affect the stacking of the 2D layers, which further influences the predominantly ionic conductivity in M-PHI. Na-containing PHI outperforms the other M-PHIs in various relative humidity (RH) environments (0-42%RH) in terms of conductivity, likely due to pore-channel geometry and size of the (hydrated) ion. With increasing RH, the ionic conductivity increases by 4-5 orders of magnitude (for Na-PHI up to 10-5 S cm-1 at 42%RH). At the same time, the highest photocatalytic hydrogen evolution rate is observed for Na-PHI, which is mirrored by increased photogenerated charge-carrier lifetimes, pointing to efficient charge-carrier stabilization by, e.g., mobile ions. These results indicate that also ionic conductivity is an important parameter that can influence the photocatalytic activity. Besides, RH-dependent ionic conductivity is of high interest for separators, membranes, or sensors.

6.
J Am Chem Soc ; 143(9): 3430-3438, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33626275

RESUMEN

Covalent organic frameworks have emerged as a powerful synthetic platform for installing and interconverting dedicated molecular functions on a crystalline polymeric backbone with atomic precision. Here, we present a novel strategy to directly access amine-linked covalent organic frameworks, which serve as a scaffold enabling pore-wall modification and linkage-interconversion by new synthetic methods based on Leuckart-Wallach reduction with formic acid and ammonium formate. Frameworks connected entirely by secondary amine linkages, mixed amine/imine bonds, and partially formylated amine linkages are obtained in a single step from imine-linked frameworks or directly from corresponding linkers in a one-pot crystallization-reduction approach. The new, 2D amine-linked covalent organic frameworks, rPI-3-COF, rTTI-COF, and rPy1P-COF, are obtained with high crystallinity and large surface areas. Secondary amines, installed as reactive sites on the pore wall, enable further postsynthetic functionalization to access tailored covalent organic frameworks, with increased hydrolytic stability, as potential heterogeneous catalysts.

7.
Molecules ; 25(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979083

RESUMEN

Both the chemical shift and quadrupole coupling tensors for 14 N and 27 Al in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of 14 N ( I = 1 ) and 27 Al ( I = 5 / 2 ), the quadrupolar coupling constants were determined to χ ( 14 N ) = ( 8 . 19 ± 0 . 02 ) kHz, and χ ( 27 Al ) = ( 1 . 914 ± 0 . 001 ) MHz. The chemical shift parameters obtained from the data fit were δ i s o = - ( 292 . 6 ± 0 . 6 ) ppm and δ Δ = - ( 1 . 9 ± 1 . 1 ) ppm for 14 N, and (after correcting for the second-order quadrupolar shift) δ i s o = ( 113 . 6 ± 0 . 3 ) ppm and δ Δ = ( 12 . 7 ± 0 . 6 ) ppm for 27 Al. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for 27 Al with χ ¯ calc = ( 1 . 791 ± 0 . 003 ) MHz, but not for 14 N with χ ¯ calc = - ( 19 . 5 ± 3 . 3 ) kHz.


Asunto(s)
Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética/métodos , Nitrógeno/química , Teoría Cuántica
8.
Angew Chem Int Ed Engl ; 59(10): 4023-4034, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31850644

RESUMEN

The main drawback of organic electrode materials is their solubility in the electrolyte, leading to the shuttle effect. Using N,N'-dimethylphenazine (DMPZ) as a highly soluble cathode material, and its PF6 - and triflimide salts as models for its first oxidation state, a poor correlation was found between solubility and battery operability. Extensive electrochemical experiments suggest that the shuttle effect is unlikely to be mediated by molecular diffusion as commonly understood, but rather by electron-hopping via the electron self-exchange reaction based on spectroscopic results. These findings led to two counter-strategies to prevent the hopping process: the pre-treatment of the anode to form a solid-electrolyte interface and using DMPZ salt rather than neutral DMPZ as the active material. These strategies improved coulombic efficiency and capacity retention, demonstrating that solubility of organic materials does not necessarily exclude their applications in batteries.

9.
Chem Mater ; 31(18): 7478-7486, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31582875

RESUMEN

Solving the structure of carbon nitrides has been a long-standing challenge due to the low crystallinity and complex structures observed within this class of earth-abundant photocatalysts. Herein, we report on two-dimensional layered potassium poly(heptazine imide) (K-PHI) and its proton-exchanged counterpart (H-PHI), obtained by ionothermal synthesis using a molecular precursor route. We present a comprehensive analysis of the in-plane and three-dimensional structure of PHI. Transmission electron microscopy and solid-state NMR spectroscopy, supported by quantum-chemical calculations, suggest a planar, imide-bridged heptazine backbone with trigonal symmetry in both K-PHI and H-PHI, whereas pair distribution function analyses and X-ray powder diffraction using recursive-like simulations of planar defects point to a structure-directing function of the pore content. While the out-of-plane structure of K-PHI exhibits a unidirectional layer offset, mediated by hydrated potassium ions, H-PHI is characterized by a high degree of stacking faults due to the weaker structure directing influence of pore water. Structure-property relationships in PHI reveal that a loss of in-plane coherence, materializing in smaller lateral platelet dimensions and increased terminal cyanamide groups, correlates with improved photocatalytic performance. Size-optimized H-PHI is highly active toward photocatalytic hydrogen evolution, with a rate of 3363 µmol/gh H2 placing it on par with the most active carbon nitrides. K- and H-PHI adopt a uniquely long-lived photoreduced polaronic state in which light-induced electrons are stored for more than 6 h in the dark and released upon addition of a Pt cocatalyst. This work highlights the importance of structure-property relationships in carbon nitrides for the rational design of highly active hydrogen evolution photocatalysts.

10.
Nat Commun ; 10(1): 3046, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292449

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Commun ; 10(1): 2689, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217421

RESUMEN

Covalent organic frameworks (COFs) are typically designed by breaking down the desired network into feasible building blocks - either simple and highly symmetric, or more convoluted and thus less symmetric. The linkers are chosen complementary to each other such that an extended, fully condensed network structure can form. We show not only an exception, but a design principle that allows breaking free of such design rules. We show that tri- and tetratopic linkers can be combined to form imine-linked [4 + 3] sub-stoichiometric 2D COFs featuring an unexpected bex net topology, and with periodic uncondensed amine functionalities which enhance CO2 adsorption, can be derivatized in a subsequent reaction, and can also act as organocatalysts. We further extend this class of nets by including a ditopic linker to form [4 + 3 + 2] COFs. The results open up possibilities towards a new class of sub-valent COFs with unique structural, topological and compositional complexities for diverse applications.

12.
Angew Chem Int Ed Engl ; 58(22): 7238-7243, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30866157

RESUMEN

The development of suitable anode materials is far from satisfactory and is a major scientific challenge for a competitive sodium-ion battery technology. Metal sulfides have demonstrated encouraging results, but still suffer from sluggish kinetics and severe capacity decay associated with the phase change. Herein we show that rational electrode design, that is, building efficient electron/ion mixed-conducting networks, can overcome the problems resulting from conversion reactions. A general strategy for the preparation of hierarchical carbon-coated metal sulfide (MS⊂C) spheres through thermal sulfurization of metal glycerate has been developed. We demonstrate the concept by synthesizing highly uniform hierarchical carbon coated vanadium sulfide (V2 S3 ⊂C) spheres, which exhibit a highly reversibly sodium storage capacity of 777 mAh g-1 at 100 mA g-1 , excellent rate capability (410 mAh g-1 at 4000 mA g-1 ), and impressive cycling ability.

13.
Phys Chem Chem Phys ; 20(30): 20043-20055, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30022194

RESUMEN

We explore the short-range ion dynamics in methylammonium lead iodide (MAPbI3, the archetypal halide perovskite) by means of solid-state NMR (1H, 13C, 14N, 15N and 207Pb) and Nuclear Quadrupolar Resonance (127I NQR), in combination with molecular dynamics simulations. We focus on the rotational motion of the methylammonium (MA) cation, and on the interaction between MA and the inorganic lattice, since these processes are linked to electronic carrier lifetimes, optical and electronic properties and even structural stability of this promising solar cell material. We show that the motion of the MA cation can be described by a bi-axial rotation, with similar interactions of CH3 and NH3+ groups with the inorganic framework. This motion becomes nearly isotropic above the cubic phase transition, dominating the spin-lattice relaxation of 1H, 13C and 15N through spin-rotational interactions. In addition, we observe strong cross-relaxation between 207Pb and 127I, which fully controls spin-spin and spin-lattice relaxation in 207Pb.

14.
Angew Chem Int Ed Engl ; 57(21): 6155-6160, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29611884

RESUMEN

Fast sodium-ion conductors are key components of Na-based all-solid-state batteries which hold promise for large-scale storage of electrical power. We report the synthesis, crystal-structure determination, and Na+ -ion conductivities of six new Na-ion conductors, the phosphidosilicates Na19 Si13 P25 , Na23 Si19 P33 , Na23 Si28 P45 , Na23 Si37 P57 , LT-NaSi2 P3 and HT-NaSi2 P3 , based entirely on earth-abundant elements. They have SiP4 tetrahedra assembled interpenetrating networks of T3 to T5 supertetrahedral clusters and can be hierarchically assigned to sphalerite- or diamond-type structures. 23 Na solid-state NMR spectra and geometrical pathway analysis show Na+ -ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy shows Na+ -ion conductivities up to σ (Na+ )=4×10-4  S cm-1 . The conductivities increase with the size of the supertetrahedral clusters through dilution of Na+ -ions as the charge density of the anionic networks decreases.

15.
Angew Chem Int Ed Engl ; 56(27): 7755-7759, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28558144

RESUMEN

By applying a multitude of experimental techniques including 1 H, 14 N, 207 Pb NMR and 127 I NMR/NQR, tracer diffusion, reaction cell and doping experiments, as well as stoichiometric variation, conductivity, and polarization experiments, iodine ions are unambiguously shown to be the mobile species in CH3 NH3 PbI3 , with iodine vacancies shown to represent the mechanistic centers under equilibrium conditions. Pb2+ and CH3 NH3+ ions do not significantly contribute to the long range transport (upper limits for their contributions are given), whereby the latter exhibit substantial local motion. The decisive electronic contribution to the mixed conductivity in the experimental window stems from electron holes. As holes can be associated with iodine orbitals, local variations of the iodine stoichiometry may be fast and enable light effects on ion transport.

16.
Angew Chem Int Ed Engl ; 56(22): 6171-6175, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28276621

RESUMEN

Methanol is one of the most common inhibitors for clathrate hydrate formation. Crystalline clathrate hydrates containing methanol were synthesized and analyzed by powder X-ray diffraction and 13 C NMR spectroscopy. The data obtained demonstrate that methanol can be a helper guest for forming structure I, structure II, and structure H clathrate hydrates, as long as the lattice framework contains NH4 F. The latter acts as a lattice stabilizer by providing sites for strong hydrogen bonding of the normally disruptive methanol hydroxy group. NH4 F and methanol can be considered key materials for crystal engineering of clathrate hydrates, as the modified lattices allow preparation of hydrates of non-traditional water-soluble guests such as alcohols and diols. Methanol takes on the role of an unconventional helper guest. This extends clathrate chemistry to a realm where neither hydrophobic guests nor high pressures are required. This also suggests that more stable lattices can be engineered for applications such as gas storage.

18.
J Phys Chem A ; 120(40): 7839-7846, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27680973

RESUMEN

From single-crystal 27Al NMR experiments, the full tensors for both the electrical field gradient (EFG) and the chemical shift (CS) for the aluminum atoms in γ-LiAlO2 have been determined. A simultaneous fit of the quadrupolar splittings observed for the four 27Al in the unit cell gave the EFG tensor in the crystal frame, from which a quadrupolar coupling constant of χ = CQ = 3.330 ± 0.005 MHz and an asymmetry parameter of ηQ = 0.656 ± 0.002 were derived. The experimentally determined quadrupolar splittings were sufficiently sensitive to quantify small deviations of both rotation axis direction and starting direction by the data fitting routine. For determination of the CS tensor, the evolution of the outer satellite centers over the crystal rotation was tracked, and the contribution of the quadrupolar shift was subtracted according to the previously determined EFG tensor. The resulting CS tensor of 27Al yields an isotropic chemical shift of δiso = 81.8 ± 0.25 ppm and an asymmetry parameter of ηCS = 0.532 ± 0.004, in good agreement with the fit of a MAS NMR spectrum acquired at B0 = 21.1 T. From both experiments and DFT calculations using the Castep code, we find the eigenvectors of the EFG and CS tensors to be practically colinear.

19.
Adv Mater ; 28(39): 8749-8754, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27545588

RESUMEN

Covalent organic frameworks (COFs) are a new class of nanoporous polymeric vector showing promise as drug-delivery vehicles with high loading capacity and biocompatibility. The interaction between the carrier and the cargo is specifically tailored on a molecular level by H-bonding. Cell-proliferation studies indicate higher efficacy of the drug in cancer cells by nanocarrier delivery mediated by the COF.


Asunto(s)
Estructuras Metalorgánicas/química , Relación Dosis-Respuesta a Droga , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Iminas , Polímeros , Porosidad , Quercetina
20.
Inorg Chem ; 55(16): 8031-40, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27447868

RESUMEN

Five new compounds in the Cu/P/Se phase diagram have been synthesized, and their crystal structures have been determined. The crystal structures of these compounds comprise four previously unreported zero-, one-, and two-dimensional selenidophosphate anions containing low-valent phosphorus. In addition to two new modifications of Cu4P2Se6 featuring the well-known hexaselenidohypodiphosphate(IV) ion, there are three copper selenidophosphates with low-valent P: Cu4P3Se4 contains two different new anions, (i) a monomeric (zero-dimensional) selenidophosphate anion [P2Se4](4-) and (ii) a one-dimensional selenidophosphate anion [Formula: see text], which is related to the well-known gray-Se-like [Formula: see text] Zintl anion. Cu4P4Se3 contains one-dimensional [Formula: see text] polyanions, whereas CuP2Se contains the 2D selenidophosphate [Formula: see text] polyanion. It consists of charge-neutral CuP2Se layers separated by a van der Waals gap which is very rare for a Zintl-type phase. Hence, besides black P, CuP2Se constitutes a new possible source of 2D oxidized phosphorus containing layers for intercalation or exfoliation experiments. Additionally, the electronic structures and some fundamental physical properties of the new compounds are reported. All compounds are semiconducting with indirect band gaps of the orders of around 1 eV. The phases reported here add to the structural diversity of chalcogenido phosphates. The structural variety of this family of compounds may translate into a variety of tunable physical properties.


Asunto(s)
Cobre/química , Compuestos Organometálicos/química , Aniones/química , Técnicas de Química Sintética , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Compuestos Organometálicos/síntesis química , Fosfatos/química , Selenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...