Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8009): 741-745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658686

RESUMEN

Extensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional edge states1-6. This interest has been motivated by prospects of finding new physics, including topologically protected quasiparticles7-9, but also extends into metrology and device applications10-13. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors2,3,6. Here we show that domain walls in minimally twisted bilayer graphene14-18 support exceptionally robust proximity superconductivity in the quantum Hall regime, allowing Josephson junctions to operate in fields close to the upper critical field of superconducting electrodes. The critical current is found to be non-oscillatory and practically unchanging over the entire range of quantizing fields, with its value being limited by the quantum conductance of ballistic, strictly one-dimensional, electronic channels residing within the domain walls. The system described is unique in its ability to support Andreev bound states at quantizing fields and offers many interesting directions for further exploration.

2.
Nano Lett ; 22(16): 6760-6766, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35930625

RESUMEN

We report experimental investigations of transport through bilayer graphene (BLG)/chromium trihalide (CrX3; X = Cl, Br, I) van der Waals interfaces. In all cases, a large charge transfer from BLG to CrX3 takes place (reaching densities in excess of 1013 cm-2), and generates an electric field perpendicular to the interface that opens a band gap in BLG. We determine the gap from the activation energy of the conductivity and find excellent agreement with the latest theory accounting for the contribution of the σ bands to the BLG dielectric susceptibility. We further show that for BLG/CrCl3 and BLG/CrBr3 the band gap can be extracted from the gate voltage dependence of the low-temperature conductivity, and use this finding to refine the gap dependence on the magnetic field. Our results allow a quantitative comparison of the electronic properties of BLG with theoretical predictions and indicate that electrons occupying the CrX3 conduction band are correlated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...