Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Drug Dev Res ; 85(4): e22197, 2024 Jun.
Article En | MEDLINE | ID: mdl-38751223

Although various approaches exist for treating cancer, chemotherapy continues to hold a prominent role in the management of this disease. Besides, microtubules serve as a vital component of the cellular skeleton, playing a pivotal role in the process of cell division making it an attractive target for cancer treatment. Hence, the scope of this work was adapted to design and synthesize new anti-tubulin tetrabromophthalimide hybrids (3-17) with colchicine binding site (CBS) inhibitory potential. The conducted in vitro studies showed that compound 16 displayed the lowest IC50 values (11.46 µM) at the FaDu cancer cell lines, whereas compound 17 exhibited the lowest IC50 value (13.62 µM) at the PC3 cancer cell line. However, compound 7b exhibited the lowest IC50 value (11.45 µM) at the MDA-MB-468 cancer cell line. Moreover, compound 17 was observed to be the superior antitumor candidate against all three tested cancer cell lines (MDA-MB-468, PC3, and FaDu) with IC50 values of 17.22, 13.15, and 13.62 µM, respectively. In addition, compound 17 showed a well-established upregulation of apoptotic markers (Caspases 3, 7, 8, and 9, Bax, and P53). Moreover, compound 17 induced downregulation of the antiapoptotic markers (MMP2, MMP9, and BCL-2). Furthermore, the colchicine binding site inhibition assay showed that compounds 15a and 17 exhibited particularly significant inhibitory potentials, with IC50 values of 23.07 and 4.25 µM, respectively, compared to colchicine, which had an IC50 value of 3.89 µM. Additionally, cell cycle analysis was conducted, showing that compound 17 could prompt cell cycle arrest at both the G0-G1 and G2-M phases. On the other hand, a molecular docking approach was applied to investigate the binding interactions of the examined candidates compared to colchicine towards CBS of the ß-tubulin subunit. Thus, the synthesized tetrabromophthalimide hybrids can be regarded as outstanding anticancer candidates with significant apoptotic activity.


Antineoplastic Agents , Apoptosis , Drug Design , Phthalimides , Tubulin Modulators , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Phthalimides/chemical synthesis , Phthalimides/pharmacology , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/pharmacology
2.
J Med Chem ; 67(1): 492-512, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38117230

Herein, modifications to the previously reported BIBR1591 were conducted to obtain bioisosteric candidates with improved activities. The % inhibition of the newly afforded candidates against the telomerase target was investigated. Notably, 6f achieved superior telomerase inhibition (63.14%) compared to BIBR1532 and BIBR1591 (69.64 and 51.58%, respectively). In addition, 8a and 8b showed comparable promising telomerase inhibition with 58.65 and 55.57%, respectively, which were recorded to be frontier to that of BIBR1591. 6f, 8a, and 8b were tested against five cancer cell lines related to the lung and liver subtypes. Moreover, 6f was examined on both cell cycle progression and apoptosis induction in HuH7 cancer cells. Furthermore, the in vivo antitumor activity of 6f was further assessed in female mice with solid Ehrlich carcinoma. In addition, molecular docking and molecular dynamics simulations were carried out. Collectively, 6f, 8a, and 8b could be considered potential new telomerase inhibitors to be subjected to further investigation and/or optimization.


Antineoplastic Agents , Telomerase , Female , Animals , Mice , Molecular Docking Simulation , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Cell Death , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure , Apoptosis
3.
J Enzyme Inhib Med Chem ; 38(1): 2205043, 2023 Dec.
Article En | MEDLINE | ID: mdl-37165800

Topoisomerases II are ubiquitous enzymes with significant genotoxic effects in many critical DNA processes. Additionally, epidermal growth factor receptor (EGFR) plays pivotal role in tumour growth and angiogenesis. A novel series of naphtho[2',3':4,5]thiazolo[3,2-a]pyrimidine hybrids have been designed, synthesised and evaluated for their topo IIα/EGFR inhibitory and apoptotic inducer activities. Cytotoxicity of the synthesised hybrids was evaluated against MCF-7, A549 and HCT-116 cell lines. Of the synthesised hybrids, 6i, 6a and 6c experienced superior cytotoxic activity compared to doxorubicin and erlotinib against the tested cancer cells. The molecular mechanism of these hybrids revealed their ability to successfully inhibit topo IIα and EGFR activities in micromolar concentration and may serve as topo II catalytic inhibitor. Moreover, these hybrids significantly arrested cell cycle at G2/M phase together with increased p53, caspae-7, caspase-9 levels and Bax/Bcl-2 ratio. The synthesised hybrids showed efficient binding pattern in molecular docking study and have acceptable drug likeness characters.


Antineoplastic Agents , Molecular Docking Simulation , Antineoplastic Agents/chemistry , DNA Topoisomerases, Type II/metabolism , ErbB Receptors/metabolism , Apoptosis , Pyrimidines/pharmacology , Topoisomerase II Inhibitors/chemistry , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship , Cell Line, Tumor
4.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 11.
Article En | MEDLINE | ID: mdl-33670273

BACKGROUND: Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as anti-hyperglycemic agents that improve glycemic control in type 2 diabetic patients, either as monotherapy or in combination with other antidiabetic drugs. METHODS: A novel series of dihydropyrimidine phthalimide hybrids was synthesized and evaluated for their in vitro and in vivo DPP-4 inhibition activity and selectivity using alogliptin as reference. Oral glucose tolerance test was assessed in type 2 diabetic rats after chronic treatment with the synthesized hybrids ± metformin. Cytotoxicity and antioxidant assays were performed. Additionally, molecular docking study with DPP-4 and structure activity relationship of the novel hybrids were also studied. RESULTS: Among the synthesized hybrids, 10g, 10i, 10e, 10d and 10b had stronger in vitro DPP-4 inhibitory activity than alogliptin. Moreover, an in vivo DPP-4 inhibition assay revealed that 10g and 10i have the strongest and the most extended blood DPP-4 inhibitory activity compared to alogliptin. In type 2 diabetic rats, hybrids 10g, 10i and 10e exhibited better glycemic control than alogliptin, an effect that further supported by metformin combination. Finally, 10j, 10e, 10h and 10d had the highest radical scavenging activity in DPPH assay. CONCLUSIONS: Hybrids 10g, 10i and 10e are potent DPP-4 inhibitors which may be beneficial for T2DM treatment.

5.
Drug Des Devel Ther ; 14: 3111-3130, 2020.
Article En | MEDLINE | ID: mdl-32848361

INTRODUCTION: In order to develop novel anticancer HDAC/tubulin dual inhibitors, a novel series of α-phthalimido-substituted chalcones-based hybrids was synthesized and characterized by IR, 1H NMR, 13C NMR, mass spectroscopy and X-ray analysis. METHODS: All the synthesized compounds were evaluated for their in vitro anticancer activity against MCF-7 and HepG2 human cancer cell lines using MTT assay. To explore the mechanism of action of the synthesized compounds, in vitro ß-tubulin polymerization and HDAC 1 and 2 inhibitory activity were measured for the most potent anticancer hybrids. Further, cell cycle analysis was also evaluated. RESULTS: The trimethoxy derivative 7j showed the most potent anticancer activity, possessed the most potent ß-tubulin polymerase and HDAC 1 and 2 inhibitory activity and efficiently induced cell cycle arrest at both G2/M and preG1phases in the MCF-7 cell line.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chalcone/pharmacology , Drug Design , Histone Deacetylase Inhibitors/pharmacology , Molecular Docking Simulation , Phthalimides/pharmacology , Tubulin Modulators/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Structure , Phthalimides/chemistry , Polymerization/drug effects , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
6.
Life Sci ; 259: 118270, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32814067

AIMS: Partial PPARγ agonists attracted substantially heightened interest as safer thiazolidinediones alternatives. On the other hand, Wnt/ß-catenin antagonists have been highlighted as promising strategy for type 2 diabetes management via up-regulating PPARγ gene expression. We aimed at synthesizing novel partial PPARγ agonists with ß-catenin inhibitory activity which could enhance insulin sensitivity and avoid the side effects of full PPARγ agonists. MAIN METHODS: We synthesized novel series of α-phthlimido-o-toluoyl-2-aminothiazoles hybrids for evaluating their antidiabetic activity and discovering its mechanistic pathway. We assessed effect of the new hybrids on PPARγ activation using a luciferase reporter assay system. Moreover, intracellular triglyceride levels, gene levels of c/EBPα, PPARγ and PPARγ targets including GLUT4, adiponectin, aP2 were measured in 3T3-L1 cells. Uptake of 2-DOG together with PPARγ and ß-catenin protein levels were evaluated in 3T3-L1cells. In addition, molecular docking studies with PPARγ LBD, physicochemical properties and structure activity relationship of the novel hybrids were also studied. KEY FINDINGS: Three of the synthesized hybrids showed partial PPARγ agonistic activity and distinct PPARγ binding pattern. These compounds modulated PPARγ gene expression and PPARγ target genes; and increased glucose uptake in 3T3-L1 and slightly induced adipogenesis compared to rosiglitazone. Moreover, these compounds reduced ß-catenin protein level which reflected in increased both PPARγ gene and protein levels that leads to improved insulin sensitivity and increased GLUT4 and adiponectin gene expression. SIGNIFICANCE: Our synthesized compounds act as novel partial PPARγ agonists and ß-catenin inhibitors that have potent insulin sensitizing activity and mitigate the lipogenic side effects of TZDs.


Insulin Resistance/physiology , Phthalimides/pharmacology , Thiazoles/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/drug effects , Adiponectin/metabolism , Animals , Cell Differentiation/drug effects , Diabetes Mellitus, Type 2/metabolism , Gene Expression/drug effects , Glucose/metabolism , Insulin/metabolism , Mice , Molecular Docking Simulation , PPAR gamma/agonists , PPAR gamma/metabolism , Rosiglitazone/pharmacology , Thiazolidinediones/pharmacology , beta Catenin/antagonists & inhibitors , beta Catenin/metabolism
7.
Bioorg Chem ; 82: 290-305, 2019 02.
Article En | MEDLINE | ID: mdl-30396063

Approximately 60% of human cancers exhibit enhanced activity of ERK1 and ERK2, reflecting their multiple roles in tumor initiation and progression. Acquired drug resistance, especially mechanisms associated with the reactivation of the MAPK (RAF/MEK/ERK) pathway represent a major challenge to current treatments of melanoma and several other cancers. Recently, targeting ERK has evolved as a potentially attractive strategy to overcome this resistance. Herein, we report the design and synthesis of novel series of fused naphthofuro[3,2-c]quinoline-6,7,12-triones 3a-f and pyrano[3,2-c]quinoline-6,7,8,13-tetraones 5a,b and 6, as potential ERK inhibitors. New inhibitors were synthesized and identified by different spectroscopic techniques and X-ray crystallography. They were evaluated for their ability to inhibit ERK1/2 in an in vitro radioactive kinase assay. 3b and 6 inhibited ERK1 with IC50s of 0.5 and 0.19 µM, and inhibited ERK2 with IC50s of 0.6 and 0.16 µM respectively. Kinetic mechanism studies revealed that the inhibitors are ATP-competitive inhibitors where 6 inhibited ERK2 with a Ki of 0.09 µM. Six of the new inhibitors were tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Compound 3b and 6 were the most potent against most of the human tumor cell lines tested. Moreover, 3b and 6 inhibited the proliferation of the BRAF mutant A375 melanoma cells with IC50s of 3.7 and 0.13 µM, respectively. In addition, they suppressed anchorage-dependent colony formation. Treatment of the A375 cell line with 3b and 6 inhibited the phosphorylation of ERK substrates p-90RSK and ELK-1 and induced apoptosis in a dose dependent manner. Finally, a molecular docking study showed the potential binding mode of 3b and 6 within the ATP catalytic binding site of ERK2.


Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Naphthoquinones/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Catalytic Domain , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Furans/chemical synthesis , Furans/chemistry , Furans/pharmacokinetics , Furans/pharmacology , GTP Phosphohydrolases/genetics , Humans , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase 1/chemistry , Molecular Structure , Mutation , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Naphthoquinones/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins B-raf/genetics , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrans/pharmacokinetics , Pyrans/pharmacology , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacokinetics , Structure-Activity Relationship
8.
Bioorg Chem ; 81: 700-712, 2018 12.
Article En | MEDLINE | ID: mdl-30268050

Two novel series of N-2,3-bis(6-substituted-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)naphthalene-1,4-diones 3a-d and substituted N-(methyl/ethyl)bisquinolinone triethyl-ammonium salts 4e,f were successfully synthesized. The synthesized compounds were targeted as new candidates to extracellular signal-regulated kinases 1/2 (ERK1/2) with considerable antineoplastic activity. The synthesis involved the reactions of 2 equivalents of 4-hydroxy-2(1H)-quinolinones 1a-f and one equivalent of 1,4-naphthoquinone (2) in a mixture of ethanol/dimethylformamide (1:1) as a solvent and 0.5 mL Et3N. In the reaction of 6-methyl-4-hydroxyquinolone 1b with 2, a side product 4b of the second series was obtained. In general, the presence of free NH-quinolone gave a single compound of the first series, whereas reaction of N-methyl/ethyl-quinolones 1e,f with 2 enhanced the formation of compounds of the second series. The structures of the new compounds were proved by different spectroscopic techniques such as IR, NMR (2D-NMR) and mass spectra, elemental analysis, and X-ray crystallography. To further elucidate the mechanism of action of these newly synthesized compounds, compounds 3a, 3b, 4e and 4f were selected to investigate for their MAP Kinases pathway inhibition together with molecular docking using ATP-binding site of ERK2. The results revealed that compounds 3a, 3b and 4f inhibited ETS-1 phosphorylation by ERK2 in a dose dependent manner. Also, compound 4f showed highest potency for ERK2 inhibition with ATP-competitive inhibition mechanism which was confirmed by the formation of three hydrogen bond in the molecular docking studies. The synthesized compounds were then tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Interestingly, the selected compounds displayed from modest to strong cytotoxic activities. Compound 3b demonstrated broad spectrum anti-tumor activity against the nine tumor sub-panels tested, while compound 3d proved to be lethal to most of the cancer cell lines as shown by their promising GI50 and TGI values in NCI in vitro five dose testing. These results revealed that the synthesized compounds can potentially serve as leads for the development of novel chemotherapeutic agents and structure improvement will be necessary for some derivatives for enhancing their cellular activities and pharmacokinetic profile.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Docking Simulation , Naphthoquinones/chemical synthesis , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/chemical synthesis
9.
Eur J Med Chem ; 54: 907-13, 2012 Aug.
Article En | MEDLINE | ID: mdl-22703846

A group of nitric oxide (NO) donating chalcone derivatives was prepared by binding amino chalcones with different NO-donating moieties including; nitrate esters, oximes and furoxans. Screening of the anticancer activity of the target compounds revealed that the selected NO-donating compounds exhibited from mild to strong cytotoxic activity. The NO/chalcone hybrids 3a and 3b exhibited remarkable activity against different types of cancer cell lines especially against the colon and melanoma cancer cell lines. The nitrate ester 3a exhibited moderate selectivity toward colon cancer subpanel with selectivity ratio of 5.87 at TGI level.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chalcone/chemical synthesis , Chalcone/pharmacology , Drug Design , Nitric Oxide/chemistry , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chalcone/adverse effects , Chalcone/chemistry , Chemistry Techniques, Synthetic , Humans , Ulcer/chemically induced
10.
Bioorg Med Chem ; 20(1): 195-206, 2012 Jan 01.
Article En | MEDLINE | ID: mdl-22137931

A group of novel nitric oxide (NO) donating chalcone derivatives was prepared by binding various amino chalcones with different NO donating moieties including; nitrate ester, oximes and furoxans. Most of the prepared compounds showed significant anti-inflammatory activity using carrageenan-induced rat paw edema method compared with indomethacin. The prepared compounds exhibited more protection than indomethacin in regard to gastric toxicity. Histopathological investigation confirmed the beneficial effects of the NO releasing compounds in reducing ulcer formation. The incorporation of the NO-donating group into the parent chalcone derivatives caused a moderate increase in the anti-inflammatory activity with a marked decrease in gastric ulcerations compared to their parent chalcone derivatives.


Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Chalcone/chemistry , Edema/drug therapy , Nitric Oxide Donors/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Carrageenan/toxicity , Edema/chemically induced , Edema/pathology , Gastrointestinal Tract/drug effects , Indomethacin/pharmacology , Nitric Oxide/metabolism , Rats
...