Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Prenat Diagn ; 43(4): 506-515, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36371615

RESUMEN

OBJECTIVE: Genomics Quality Assessment has provided external quality assessments (EQAs) for preimplantation genetic testing (PGT) for 12 years for eight monogenic diseases to identify sub-optimal PGT strategies, testing and reporting of results, which can be shared with the genomics community to aid optimised standards of PGT services for couples. METHOD: The EQAs were provided in two stages to mimic end-to-end protocols. Stage 1 involved DNA feasibility testing of a couple undergoing PGT and affected proband. Participants were required to report genotyping results and outline their embryo testing strategy. Lymphoblasts were distributed for mock embryo testing for stage 2. Submitted clinical reports and haplotyping results were assessed against peer-ratified criteria. Performance was monitored to identify poor performance. RESULTS: The most common testing methodology was short tandem repeat linkage analysis (59%); however, the adoption of single nucleotide polymorphism-based platforms was observed and a move from blastomere to trophectoderm testing. There was a variation in testing strategies, assigning marker informativity and understanding test limitations, some clinically unsafe. Critical errors were reported for genotyping and interpretation. CONCLUSION: EQA provides an overview of the standard of preimplantation genetic testing-M clinical testing and identifies areas of improvement for accurate detection of high-risk embryos.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Blastocisto , Aneuploidia
2.
Fam Cancer ; 22(1): 119-125, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35415820

RESUMEN

Data on preimplantation genetic testing (PGT-M) in patients with genetic susceptibility to cancer are scarce in the literature, while there is, in our experience, a growing familiarity with assisted reproduction techniques (ART) among pathogenic variant heterozygotes. We performed a retrospective multicenter study of PGT-M outcomes among French patients with genetic susceptibility to cancer. Our objectives were to collect data on this complex issue, and to help cancer geneticists counsel their patients of reproductive age. We also wanted to increase awareness regarding PGT-M among cancer genetics professionals. Patients from three university hospital cancer genetics clinics who had requested PGT-M between 2000 and 2019 were included retrospectively. Data were extracted from medical records. Patients were then contacted directly to collect missing and up-to-date information. Out of 41 eligible patients, 28 agreed explicitly to participate when contacted and were therefore included. They carried PV in VHL (n = 9), APC (n = 8), CDH1 (n = 5), STK11 (n = 2), AXIN2, BRCA1, MEN1, and FH (n = 1). Seven patients were denied PGT-M based on multidisciplinary team meetings or subsequently by the ART hospital teams, two changed their minds, and two were yet to start the process. PGT-M was successful in seven patients (25%), with a mean age at PGT-M request of 27. Most had von Hippel-Lindau. PGT-M failed in the remaining ten, with a mean age at PGT-M request of 32. The main reason for failure was non-implantation of the embryo. Of these, four patients were pursuing PGT-M at the time of last contact. PGT-M outcomes in patients with cancer susceptibility syndromes were satisfactory. These patients should be informed about PGT-M more systematically, which would imply greater awareness among cancer genetics professionals regarding ART. Our series was not representative of cancer susceptibility syndromes in general; the predominance of cases with syndromes characterized by early-onset, highly penetrant disease is explained by the restrictive French guidelines.


Asunto(s)
Neoplasias , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Predisposición Genética a la Enfermedad , Diagnóstico Preimplantación/métodos , Estudios Retrospectivos , Transferencia de Embrión/métodos , Pruebas Genéticas/métodos , Neoplasias/diagnóstico , Neoplasias/genética
3.
Hum Reprod Open ; 2020(3): hoaa021, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524036

RESUMEN

The field of preimplantation genetic testing (PGT) is evolving fast, and best practice advice is essential for regulation and standardisation of diagnostic testing. The previous ESHRE guidelines on best practice for preimplantation genetic diagnosis, published in 2005 and 2011, are considered outdated and the development of new papers outlining recommendations for good practice in PGT was necessary. The current updated version of the recommendations for good practice is, similar to the 2011 version, split into four documents, one of which covers the organisation of a PGT centre. The other documents focus on the different technical aspects of embryo biopsy, PGT for monogenic/single-gene defects (PGT-M) and PGT for chromosomal structural rearrangements/aneuploidies (PGT-SR/PGT-A). The current document outlines the steps prior to starting a PGT cycle, with details on patient inclusion and exclusion, and counselling and information provision. Also, recommendations are provided on the follow-up of PGT pregnancies and babies. Finally, some further recommendations are made on the practical organisation of an IVF/PGT centre, including basic requirements, transport PGT and quality management. This document, together with the documents on embryo biopsy, PGT-M and PGT-SR/PGT-A, should assist everyone interested in PGT in developing the best laboratory and clinical practice possible.

4.
Hum Reprod Open ; 2020(3): hoaa018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32500103

RESUMEN

The field of preimplantation genetic testing (PGT) is evolving fast and best practice advice is essential for regulation and standardisation of diagnostic testing. The previous ESHRE guidelines on best practice for PGD, published in 2005 and 2011, are considered outdated, and the development of new papers outlining recommendations for good practice in PGT was necessary. The current paper provides recommendations on the technical aspects of PGT for monogenic/single-gene defects (PGT-M) and covers recommendations on basic methods for PGT-M and testing strategies. Furthermore, some specific recommendations are formulated for special cases, including de novo pathogenic variants, consanguineous couples, HLA typing, exclusion testing and disorders caused by pathogenic variants in the mitochondrial DNA. This paper is one of a series of four papers on good practice recommendations on PGT. The other papers cover the organisation of a PGT centre, embryo biopsy and tubing and the technical aspects of PGT for chromosomal structural rearrangements/aneuploidies. Together, these papers should assist scientists interested in PGT in developing the best laboratory and clinical practice possible.

5.
Sci Rep ; 10(1): 9861, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555262

RESUMEN

Non-Invasive Prenatal Diagnosis (NIPD), based on the analysis of circulating cell-free fetal DNA (cff-DNA), is successfully implemented for an increasing number of monogenic diseases. However, technical issues related to cff-DNA characteristics remain, and not all mutations can be screened with this method, particularly triplet expansion mutations that frequently concern prenatal diagnosis requests. The objective of this study was to develop an approach to isolate and analyze Circulating Trophoblastic Fetal Cells (CFTCs) for NIPD of monogenic diseases caused by triplet repeat expansion or point mutations. We developed a method for CFTC isolation based on DEPArray sorting and used Huntington's disease as the clinical model for CFTC-based NIPD. Then, we investigated whether CFTC isolation and Whole Genome Amplification (WGA) could be used for NIPD in couples at risk of transmitting different monogenic diseases. Our data show that the allele drop-out rate was 3-fold higher in CFTCs than in maternal cells processed in the same way. Moreover, we give new insights into CFTCs by compiling data obtained by extensive molecular testing by microsatellite multiplex PCR genotyping and by WGA followed by mini-exome sequencing. CFTCs appear to be often characterized by a random state of genomic degradation.


Asunto(s)
Feto/citología , Diagnóstico Prenatal/métodos , Análisis de la Célula Individual , Trofoblastos/citología , Separación Celular , Estudios de Factibilidad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Repeticiones de Trinucleótidos/genética
6.
Eur J Hum Genet ; 24(2): 221-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25966634

RESUMEN

Fragile X syndrome (FraX) is caused by the expansion of an unstable CGG repeat located in the Fragile X mental retardation 1 gene (FMR1) gene. Preimplantation genetic diagnosis (PGD) can be proposed to couples at risk of transmitting the disease, that is, when the female carries a premutation or a full mutation. We describe two new single-cell, single-round multiplex PCR for indirect and direct diagnosis of FraX on biopsied embryos. These tests include five unpublished, highly heterozygous simple sequence repeats, and the co-amplification of non-expanded CGG repeats for the direct test. Heterozygosity of the new markers ranged from 69 to 81%. The mean rate of non-informative marker included in the tests was low (26% and 23% for the new indirect and direct tests, respectively). This strategy allows offering a PGD for FraX to 96% of couples requesting it in our centre. A conclusive genotype was obtained in all cells with a rate of cells presenting an allele dropout ranging from 17% for the indirect test to 26% for the direct test. The new indirect test was applied for eight PGD cycles: 32 embryos were analysed, 9 were transferred and 3 healthy babies were born. By multiplexing these highly informative markers, robustness of the diagnosis is improved and the loss of potentially healthy embryos (because they are non-diagnosed or misdiagnosed) is limited. This may increase the chances of success of couples requesting a PGD for FraX, in particular, when premature ovarian insufficiency in premutated women leads to a reduced number of embryos available for analysis.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Repeticiones de Microsatélite/genética , Diagnóstico Preimplantación , Adulto , Alelos , Femenino , Síndrome del Cromosoma X Frágil/patología , Genotipo , Heterocigoto , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Mutación , Embarazo , Insuficiencia Ovárica Primaria/diagnóstico , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/patología , Análisis de la Célula Individual , Repeticiones de Trinucleótidos/genética
7.
Eur J Hum Genet ; 22(8): 1012-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24301057

RESUMEN

Preimplantation genetic diagnosis (PGD) for monogenic disorders currently involves polymerase chain reaction (PCR)-based methods, which must be robust, sensitive and highly accurate, precluding misdiagnosis. Twelve adverse misdiagnoses reported to the ESHRE PGD-Consortium are likely an underestimate. This retrospective study, involving six PGD centres, assessed the validity of PCR-based PGD through reanalysis of untransferred embryos from monogenic-PGD cycles. Data were collected on the genotype concordance at PGD and follow-up from 940 untransferred embryos, including details on the parameters of PGD cycles: category of monogenic disease, embryo morphology, embryo biopsy and genotype assay strategy. To determine the validity of PCR-based PGD, the sensitivity (Se), specificity (Sp) and diagnostic accuracy were calculated. Stratified analyses were also conducted to assess the influence of the parameters above on the validity of PCR-based PGD. The analysis of overall data showed that 93.7% of embryos had been correctly classified at the time of PGD, with Se of 99.2% and Sp of 80.9%. The stratified analyses found that diagnostic accuracy is statistically significantly higher when PGD is performed on two cells versus one cell (P=0.001). Se was significantly higher when multiplex protocols versus singleplex protocols were applied (P=0.005), as well as for PGD applied on cells from good compared with poor morphology embryos (P=0.032). Morphology, however, did not affect diagnostic accuracy. Multiplex PCR-based methods on one cell, are as robust as those on two cells regarding false negative rate, which is the most important criteria for clinical PGD applications. Overall, this study demonstrates the validity, robustness and high diagnostic value of PCR-based PGD.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Reacción en Cadena de la Polimerasa , Diagnóstico Preimplantación , Biopsia , Blastómeros/metabolismo , Femenino , Humanos , Embarazo , Diagnóstico Preimplantación/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Factores de Riesgo
8.
Eur J Hum Genet ; 21(8): 800-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23150080

RESUMEN

Preimplantation genetic diagnosis (PGD) was first performed over 20 years ago and has become an accepted part of genetic testing and assisted reproduction worldwide. The techniques and protocols necessary to carry out genetic testing at the single-cell level can be difficult to master and have been developed independently by the laboratories worldwide offering preimplantation testing. These factors indicated the need for an external quality assessment (EQA) scheme for monogenic disease PGD. Toward this end, the European Society for Human Reproduction and Embryology came together with United Kingdom National External Quality Assessment Services for Molecular Genetics, to create a pilot EQA scheme followed by practical EQA schemes for all interested parties. Here, we detail the development of the pilot scheme as well as development and findings from the practical (clinical) schemes that have followed. Results were generally acceptable and there was marked improvement in results and laboratory scores for those labs that participated in multiple schemes. Data from the first three schemes indicate that the EQA scheme is working as planned and has helped laboratories improve their techniques and result reporting. The EQA scheme for monogenic PGD will continue to be developed to offer assessment for other monogenic disorders.


Asunto(s)
Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Diagnóstico Preimplantación/métodos , Garantía de la Calidad de Atención de Salud/métodos , Femenino , Humanos , Laboratorios/normas , Proyectos Piloto , Embarazo , Diagnóstico Preimplantación/normas , Garantía de la Calidad de Atención de Salud/normas , Garantía de la Calidad de Atención de Salud/tendencias , Control de Calidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo
9.
Eur J Hum Genet ; 20(4): 368-75, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22071896

RESUMEN

This study provides an overview of 13 years of experience of preimplantation genetic diagnosis (PGD) for Huntington's disease (HD) at three European PGD centres in Brussels, Maastricht and Strasbourg. Information on all 331 PGD intakes for HD, couples' reproductive history, PGD approach, treatment cycles and outcomes between 1995 and 2008 were collected prospectively. Of 331 couples for intake, 68% requested direct testing and 32% exclusion testing (with a preponderance of French couples). At the time of PGD intake, 39% of women had experienced one or more pregnancies. A history of pregnancy termination after prenatal diagnosis was observed more frequently in the direct testing group (25%) than in the exclusion group (10%; P=0.0027). PGD workup was based on two approaches: (1) direct testing of the CAG-triplet repeat and (2) linkage analysis using intragenic or flanking microsatellite markers of the HTT gene. In total, 257 couples had started workup and 174 couples (70% direct testing, 30% exclusion testing) completed at least one PGD cycle. In total, 389 cycles continued to oocyte retrieval (OR). The delivery rates per OR were 19.8%, and per embryo transfer 24.8%, resulting in 77 deliveries and the birth of 90 children. We conclude that PGD is a valuable and safe reproductive option for HD carriers and couples at risk of transmitting HD.


Asunto(s)
Enfermedad de Huntington/diagnóstico , Diagnóstico Preimplantación/métodos , Adulto , Transferencia de Embrión , Europa (Continente) , Femenino , Ligamiento Genético , Humanos , Enfermedad de Huntington/genética , Embarazo , Complicaciones del Embarazo
10.
In Vitro Cell Dev Biol Anim ; 46(3-4): 376-85, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20217271

RESUMEN

Pre-implantation genetic diagnosis allows the characterisation of embryos that carry a gene responsible for a severe monogenic disease and to transfer to the mother's uterus only the unaffected one(s). The genetically affected embryos can be used to establish human embryonic stem cell (hESC) lines. We are currently establishing a cell bank of ESC lines carrying specific disease-causing mutant genes. These cell lines are available to the scientific community. For this purpose, we have designed a technique that requires only minimal manipulation of the embryos. At the blastocyst stage, we just removed the zona pellucida before seeding the embryo as a whole on a layer of feeder cells. This approach gave a good success rate (>20%), whatever the quality of the embryos, and allowed us to derive 11 new hESC lines, representing seven different pathologies. Full phenotypic validation of the cell lines according to ISCI guidelines confirmed their pluripotent nature, as they were positive for hESC markers and able to differentiate in vitro in all three germ layers derivatives. Nine out of 11 stem cell lines had normal karyotypes. Our results indicate that inner cell mass isolation is not mandatory for hESC derivation and that minimal manipulation of embryos can lead to high success rate.


Asunto(s)
Blastocisto/citología , Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Diagnóstico Preimplantación/métodos , Animales , Antígenos de Superficie/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/genética , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Cariotipificación , Masculino , Ratones , Linaje , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA