Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
J Food Prot ; 86(1): 100017, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36916584

RESUMEN

The effect of potassium tellurite concentration in a chromogenic agar medium on the detection of tellurite-resistant "top seven" Shiga toxin-producing Escherichia coli (STEC) in beef was evaluated. Samples of ground beef were inoculated with tellurite-resistant STEC O26, O45, O103, O111, O121, O145, or O157 strains at geometric mean (±standard error of the mean) levels of 0, 49 (±1), 490 (±1), or 4900 (±1) CFU/10 g and enriched 1:10 (90 mL) in EC broth (40°C for 6 h). Following enrichment, aliquots of broth culture were treated by immunomagnetic separation with one of three pools of beads against STEC serogroups; pool I: O26, O45, and O121; pool II: O103, O111, and O145; and pool III: O157. After immunomagnetic separation, 50 µL of washed bead suspensions in buffered peptone water was spiral plated onto a modified Possé medium containing 0.5, 1.0, or 1.5 mg/L potassium tellurite, and incubated at 37°C for 18 h. Up to four isolated colonies were picked from each spiral plate based on expected colony phenotypes for STEC, and isolate identity was confirmed with an 11-plex PCR assay targeting the O serogroups and virulence genes. Overall, across all inoculum levels and strains, modified Possé media containing 0.5, 1.0, or 1.5 mg/L potassium tellurite each had a positive predictive value of 100%, and medium containing 0.5 mg/L potassium tellurite had numerically the highest sensitivity (100%) and negative predictive value (100%), which was significantly different from 1.5 mg/L (92.9% and 40.0%, respectively; P < 0.05). Similarly, there was an inverse relationship between potassium tellurite concentration and analytical specificity (number of colonies tested that were STEC-positive): 0.5 (1463 of 1482; 98.7%), 1.0 (1356 of 1411; 96.1%), and 1.5 mg/L (1187 of 1278; 92.9%; P < 0.05). These results suggest that 0.5 mg/L gives better performance than 1.0 or 1.5 mg/L of potassium tellurite in Possé medium for isolation of tellurite-resistant "top seven" STEC from ground beef.


Asunto(s)
Carne , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Agar , Medios de Cultivo
3.
Microorganisms ; 11(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36985205

RESUMEN

Salmonella enterica is, globally, an important cause of human illness with beef being a significant attributable source. In the human patient, systemic Salmonella infection requires antibiotic therapy, and when strains are multidrug resistant (MDR), no effective treatment may be available. MDR in bacteria is often associated with the presence of mobile genetic elements (MGE) that mediate horizontal spread of antimicrobial resistance (AMR) genes. In this study, we sought to determine the potential relationship of MDR in bovine Salmonella isolates with MGE. The present study involved 111 bovine Salmonella isolates obtained collectively from specimens derived from healthy cattle or their environments at Midwestern U.S. feedyards (2000-2001, n = 19), or specimens from sick cattle submitted to the Nebraska Veterinary Diagnostic Center (2010-2020, n = 92). Phenotypically, 33/111 isolates (29.7%) were MDR (resistant to ≥3 drug classes). Based on whole-genome sequencing (WGS; n = 41) and PCR (n = 111), a MDR phenotype was strongly associated (OR = 186; p < 0.0001) with carriage of ISVsa3, an IS91-like Family transposase. In all 41 isolates analyzed by WGS ((31 MDR and 10 non-MDR (resistant to 0-2 antibiotic classes)), MDR genes were associated with carriage of ISVsa3, most often on an IncC type plasmid carrying blaCMY-2. The typical arrangement was floR, tet(A), aph(6)-Id, aph(3″)-Ib, and sul2 flanked by ISVsa3. These results suggest that AMR genes in MDR S. enterica isolates of cattle are frequently associated with ISVsa3 and carried on IncC plasmids. Further research is needed to better understand the role of ISVsa3 in dissemination of MDR Salmonella strains.

4.
mSphere ; 8(2): e0047822, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36883813

RESUMEN

Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.


Asunto(s)
Colitis , Infecciones por Escherichia coli , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Inflamación/patología
5.
Zoonoses Public Health ; 68(3): 213-225, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33528112

RESUMEN

Escherichia albertii, often misidentified as Escherichia coli, has become an emerging foodborne human enteric pathogen. However, the prevalence and major animal reservoirs of this significant pathogen are still not clear. Here, we performed comprehensive microbiological, molecular, comparative genomics and animal studies to understand the status and features of E. albertii in the US domestic and food animals. Although no E. albertii was identified in a total of 1,022 diverse E. coli strains isolated from pets and food animals in a retrospective screening, in a pilot study, E. albertii was successfully isolated from a broiler farm (6 out of 20 chickens). The chicken E. albertii isolates showed clonal relationship as indicated by both pulsed-field gel electrophoresis (PFGE) and whole-genome sequence analysis. The isolated chicken E. albertii displayed multidrug resistance; all the resistance determinants including the extended-spectrum beta-lactamase gene, carried by plasmids, could be conjugatively transferred to E. coli, which was further confirmed by S1-PFGE and Southern hybridization. Whole-genome sequence-based phylogenetic analysis showed the chicken E. albertii strains were phylogenetically close to those of human origins. Challenge experiment demonstrated that the E. albertii strains isolated from human and wild bird could successfully colonize in the chicken intestine. Together, this study, for the first time, reported the isolation of E. albertii in poultry at the pre-hrvest level. The findings from multi-tier characterization of the chicken E. albertii strains indicated the importance of chickens as a reservoir for E. albertii. A large scale of E. albertii survey in poultry production at the pre-harvest level is highly warranted in the future.


Asunto(s)
Pollos/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Escherichia/genética , Escherichia/aislamiento & purificación , Animales , Electroforesis en Gel de Campo Pulsado/veterinaria , Infecciones por Enterobacteriaceae/microbiología , Genoma Bacteriano , Genómica , Tipificación de Secuencias Multilocus/veterinaria , Proyectos Piloto , Estudios Retrospectivos
6.
J Food Prot ; 84(2): 220-232, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32977344

RESUMEN

ABSTRACT: A total of 482 veal cutlet, 555 ground veal, and 540 ground beef samples were purchased from retail establishments in the mid-Atlantic region of the United States over a noncontiguous 2-year period between 2014 and 2017. Samples (325 g each) were individually enriched and screened via real-time PCR for all seven regulated serogroups of Shiga toxin-producing Escherichia coli (STEC). Presumptive STEC-positive samples were subjected to serogroup-specific immunomagnetic separation and plated onto selective media. Up to five isolates typical for STEC from each sample were analyzed via multiplex PCR for both the virulence genes (i.e., eae, stx1 and/or stx2, and ehxA) and serogroup-specific gene(s) for the seven regulated STEC serogroups. The recovery rates of non-O157 STEC from veal cutlets (3.94%, 19 of 482 samples) and ground veal (7.03%, 39 of 555 samples) were significantly higher (P < 0.05) than that from ground beef (0.93%, 5 of 540 samples). In contrast, only a single isolate of STEC O157:H7 was recovered; this isolate originated from 1 (0.18%) of 555 samples of ground veal. Recovery rates for STEC were not associated with state, season, packaging type, or store type (P > 0.05) but were associated with brand and fat content (P < 0.05). Pulsed-field subtyping of the 270 viable and confirmed STEC isolates from the 64 total samples testing positive revealed 78 pulsotypes (50 to 80% similarity) belonging to 39 pulsogroups, with ≥90% similarity among pulsotypes within pulsogroups. Multiple isolates from 43 (67.7%) of 64 samples testing positive had an indistinguishable pulsotype. STEC serotypes O26 and O103 were the most prevalent serogroups in beef and veal, respectively. These findings support related findings from regulatory sampling studies over the past decade and confirm that recovery rates for the regulated STEC serogroups are higher for raw veal than for raw beef samples, as was observed in the present study of meat purchased at food retailers in the mid-Atlantic region of the United States.


Asunto(s)
Proteínas de Escherichia coli , Carne Roja , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Proteínas de Escherichia coli/genética , Carne , Mid-Atlantic Region , Serogrupo , Estados Unidos
8.
Microorganisms ; 9(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374893

RESUMEN

Globally, Shiga toxin-producing Escherichia coli (STEC) is an important cause of diarrheal disease, most notably hemorrhagic colitis, and post-diarrheal sequela, such as hemolytic-uremic syndrome (HUS) [...].

9.
J Food Prot ; 83(7): 1149-1154, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32572495

RESUMEN

ABSTRACT: The performance of three chromogenic agar media for detection of the "top seven" Shiga toxin-producing Escherichia coli (STEC) in beef was compared. Samples of retail ground beef were inoculated with STEC O26, O45, O103, O111, O121, O145, or O157 at geometric mean (±standard error of the mean) levels of 0, 48 (±1), 420 (±1), 4,100 (±1), or 45,000 (±1) CFU/10 g and enriched 1:10 (90 mL) in EC broth (40°C for 6 h). Following enrichment, aliquots of broth culture were treated by immunomagnetic separation with one of three pools of beads against the seven STEC serogroups: pool I, O26, O45, and O121; pool II, O103, O111, and O145; and pool III, O157. After immunomagnetic separation, 50 µL of washed bead suspensions in buffered peptone water were spiral plated onto modified Rainbow Agar O157 (mRBA), CHROMagar STEC (CS), or modified Possé differential medium (mPossé2) and incubated at 37°C for 18 h. Up to six isolated colonies were picked from each spiral plate based on expected colony phenotypes for STEC on the respective media, and isolate identity was confirmed with an 11-plex PCR assay targeting the O serogroups and virulence genes. Overall, mRBA had the highest sensitivity (99.2%), correctly detecting a significantly higher proportion of STEC serogroups than either CS (79.4%; P < 0.05) or mPossé2 (91.7%; P < 0.05). mRBA also had the highest negative predictive value (90.0%), correctly identifying a significantly higher proportion of true-negative samples compared with CS (25.7%; P < 0.05) and mPossé2 (46.2%; P < 0.05). However, mRBA also had the lowest analytical specificity of 83.2% (P < 0.05), yielding the lowest proportion of colonies tested that were STEC positive (3,548 of 4,263) compared with 97.7% (3,607 of 3,693) for mPossé2 and 98.0% (2,875 of 2,935) for CS. Reduced specificity results in more work and higher expense due to the increased number of colonies that must be tested. Further improvements in agar culture media for non-O157 STEC isolation are needed.


Asunto(s)
Escherichia coli Shiga-Toxigénica , Agar , Animales , Bovinos , Medios de Cultivo , Separación Inmunomagnética , Carne
10.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-32144103

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains producing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of pig postweaning diarrhea (PWD). We recently identified neutralizing epitopes of fimbriae K88 and F18, heat-labile toxin (LT), heat-stable toxins type I (STa) and type II (STb), and Shiga toxin 2e (Stx2e). In this study, we explored a novel epitope- and structure-based vaccinology platform, multiepitope fusion antigen (MEFA), for PWD vaccine development. By using an epitope substitution LT toxoid, which lacks enterotoxicity but retains immunogenicity, as the backbone to present neutralizing epitopes of two ETEC fimbriae and four toxins, we generated PWD fimbria-toxin MEFA to mimic epitope native antigenicity. We then examined MEFA protein immunogenicity and evaluated MEFA application in PWD vaccine development. Mice subcutaneously immunized with PWD MEFA protein developed strong IgG responses to K88, F18, LT, and STb and moderate responses to the toxins Stx2e and STa. Importantly, MEFA-induced antibodies inhibited adherence of K88 or F18 fimbrial bacteria to pig intestinal cells and also neutralized LT, STa, STb, and Stx2e toxicity. These results indicated that PWD fimbria-toxin MEFA induced neutralizing antibodies against an unprecedent two fimbriae and four toxins and strongly suggested a potential application of this MEFA protein in developing a broadly protective PWD vaccine.IMPORTANCE ETEC-associated postweaning diarrhea (PWD) causes significant economic losses to swine producers worldwide. Currently, there is no effective prevention against PWD. A vaccine that blocks ETEC fimbriae (K88 and F18) from attaching to host receptors and prevents enterotoxins from stimulating water hypersecretion in pig small intestinal epithelial cells can effectively protect against PWD and significantly improves pig health and well-being. The fimbria-toxin MEFA generated from this study induced neutralizing antibodies against both ETEC fimbriae and all four ETEC toxins, suggesting a great potential of this fimbria-toxin MEFA in PWD vaccine development and further supporting the general application of this novel MEFA vaccinology platform for multivalent vaccine development.


Asunto(s)
Vacunas Bacterianas/inmunología , Diarrea/veterinaria , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/inmunología , Fimbrias Bacterianas/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas Combinadas/inmunología , Animales , Antígenos Bacterianos/inmunología , Toxinas Bacterianas/inmunología , Diarrea/inmunología , Diarrea/microbiología , Diarrea/prevención & control , Epítopos/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Vacunología , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA