Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Interferon Cytokine Res ; 35(8): 621-33, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25866898

RESUMEN

Type 1 interferons (IFNs) have been shown to be efficacious against hepatitis C virus (HCV), hepatitis B virus (HBV), and some cancers with a significant drawback of short drug exposure. We have significantly improved the pharmacokinetic (PK) of consensus interferon (CIFN) by glycoengineering. We generated AL-624 by introducing 4 glycosylation sites. AL-624 was expressed, purified, and fractionated to yield 2-Gly, 3-Gly, and 4-Gly. In a rat PK study, AL-624 4-Gly exhibited a 6-fold increase of area under curve (AUC) and more than an 11-fold increase in time to half life (T1/2) over CIFN, suggesting the potential for weekly dosing (QW). In Yellow fever virus hamster model, QW of 4-Gly achieved similar efficacy to daily dosing (QD) CIFN and QW Peg-IFN-α-2a in overall survival rate and reduction of alanine aminotransferase (ALT) level. Further refinement resulted in development of AL-683 by addition of external glycosylation sites and its mouse homologue. AL-683 maintains undiminished biological potency in HCV replicon. In mouse PK/pharmacodynamic (PD) studies, AL-683 homologue has a ∼37-fold improvement in T1/2 and a ∼33-fold improvement in AUC when compared with the unglycosylated mouse IFN-α-1. Significantly improved PD responses were also observed. The significant improvement of AL-683 PK over AL-624 suggests a bimonthly dosing regimen for AL-683. The possibility for once-a-month dosing could be realized by further optimization of manufacturing conditions.


Asunto(s)
Antivirales/farmacología , Interferón-alfa/farmacología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/metabolismo , Línea Celular , Cricetinae , Diseño de Fármacos , Monitoreo de Drogas , Glicosilación , Humanos , Interferón-alfa/química , Interferón-alfa/genética , Interferón-alfa/aislamiento & purificación , Interferón-alfa/metabolismo , Ratones , Modelos Moleculares , Conformación Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
2.
Bioorg Med Chem ; 21(17): 5461-9, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23810677

RESUMEN

5'-Triphosphate 2'-5'-oligoadenylate (2-5A) is the central player in the 2-5A system that is an innate immunity pathway in response to the presence of infectious agents. Intracellular endoribonuclease RNase L activated by 2-5A cleaves viral and cellular RNA resulting in apoptosis. The major limitations of 2-5A for therapeutic applications is the short biological half-life and poor cellular uptake. Modification of 2-5A with biolabile and lipophilic groups that facilitate its uptake, increase its in vivo stability and release the parent 2-5A drug in an intact form offer an alternative approach to therapeutic use of 2-5A. Here we have synthesized the trimeric and tetrameric 2-5A species bearing hydrophobic and enzymolabile pivaloyloxymethyl groups at 3'-positions and a triphosphate at the 5'-end. Both analogs were able to activate RNase L and the production of the trimer 2-5A (the most active) was scaled up to the milligram scale for antiviral evaluation in cells infected by influenza virus or respiratory syncytial virus. The trimer analog demonstrated some significant antiviral activity.


Asunto(s)
Nucleótidos de Adenina/química , Antivirales/síntesis química , Endorribonucleasas/química , Oligorribonucleótidos/química , Nucleótidos de Adenina/síntesis química , Nucleótidos de Adenina/farmacología , Antivirales/química , Antivirales/farmacología , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Virus de la Influenza A/efectos de los fármacos , Oligorribonucleótidos/síntesis química , Oligorribonucleótidos/farmacología , Polimerizacion , Técnicas de Síntesis en Fase Sólida
3.
Genes Cancer ; 1(9): 927-940, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21552398

RESUMEN

Calcitriol (1,25(OH)(2)D3) is cytostatic for prostate cancer (CaP), but had limited therapeutic utility due to hypercalcemia-related toxicities, leading to the development of low-calcemic calcitriol analogs. We show that one analog, 1-α-Hydroxyvitamin-D5 (1α(OH)D5), induced apoptosis in castration-sensitive LNCaP prostate cancer cells, but unlike calcitriol, did not increase androgen receptor (AR) transcriptional activity. LNCaP-AI, a castrate-resistant (CRCaP) LNCaP subline, was resistant to 1α(OH)D5 in the presence of androgens; however, androgen withdrawal (AWD), although ineffective by itself, sensitized LNCaP-AI cells to 1α(OH)D5. Investigation of the mechanism revealed that the vitamin D receptor (VDR), which mediates the effects of 1α(OH)D5, is downregulated in LNCaP-AI cells compared to LNCaP in the presence of androgens, whereas AWD restored VDR expression. Since LNCaP-AI cells expressed higher AR compared to LNCaP and AWD decreased AR, this indicated an inverse relationship between VDR and AR. Further, AR stimulation (by increased androgen) suppressed VDR, while AR downregulation (by ARsiRNA) stimulated VDR levels and sensitized LNCaP-AI cells to 1α(OH)D5 similar to AWD. Another cell line, pRNS-1-1, although isolated from a normal prostate, had lost AR expression in culture and adapted to androgen-independent growth. These cells expressed the VDR and were sensitive to 1α(OH)D5, but restoration of AR expression suppressed VDR levels and induced resistance to 1α(OH)D5 treatment. Taken together, these results demonstrate negative regulation of VDR by AR in CRCaP cells. This effect is likely mediated by prohibitin (PHB), which was inhibited by AR transcriptional activity and stimulated VDR in CRCaP, but not castrate-sensitive cells. Therefore, in castration sensitive cells, although the AR negatively regulates PHB, this does not affect VDR expression, whereas in CRCaP cells, negative regulation of PHB by the AR results in concomitant negative regulation of the VDR by the AR. These data demonstrate a novel mechanism by which 1α(OH)D5 prolong the effectiveness of AWD in CaP cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...