Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Tissue Eng ; 15: 20417314241257352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872920

RESUMEN

Tissue engineering approaches hold great promise in the field of regenerative medicine, especially in the context of pediatric applications, where ideal grafts need to restore the function of the targeted tissue and consider growth. In the present study, we aimed to develop a protocol to engineer autologous phalangeal grafts of relevant size for children suffering from symbrachydactyly. This condition results in hands with short fingers and missing bones. A previously-described, developmentally-inspired strategy based on endochondral ossification (ECO)-the main pathway leading to bone and bone marrow development-and adipose derived-stromal cells (ASCs) as the source of chondroprogenitor was used. First, we demonstrated that pediatric ASCs associated with collagen sponges can generate hypertrophic cartilage tissues (HCTs) in vitro that remodel into bone tissue in vivo via ECO. Second, we developed and optimized an in vitro protocol to generate HCTs in the shape of small phalangeal bones (108-390 mm3) using freshly isolated adult cells from the stromal vascular fraction (SVF) of adipose tissue, associated with two commercially available large collagen scaffolds (Zimmer Plug® and Optimaix 3D®). We showed that after 12 weeks of in vivo implantation in an immunocompromised mouse model such upscaled grafts remodeled into bone organs (including bone marrow tissues) retaining the defined shape and size. Finally, we replicated similar outcome (albeit with a slight reduction in cartilage and bone formation) by using minimally expanded pediatric ASCs (3 × 106 cells per grafts) in the same in vitro and in vivo settings, thereby validating the compatibility of our pediatric phalanx engineering strategy with a clinically relevant scenario. Taken together, these results represent a proof of concept of an autologous approach to generate osteogenic phalangeal grafts of pertinent clinical size, using ASCs in children born with symbrachydactyly, despite a limited amount of tissue available from pediatric patients.

2.
Commun Biol ; 6(1): 1266, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38092861

RESUMEN

Culture-adapted human mesenchymal stromal cells (hMSCs) are appealing candidates for regenerative medicine applications. However, these cells implanted in lesions as single cells or tissue constructs encounter an ischemic microenvironment responsible for their massive death post-transplantation, a major roadblock to successful clinical therapies. We hereby propose a paradigm shift for enhancing hMSC survival by designing, developing, and testing an enzyme-controlled, nutritive hydrogel with an inbuilt glucose delivery system for the first time. This hydrogel, composed of fibrin, starch (a polymer of glucose), and amyloglucosidase (AMG, an enzyme that hydrolyze glucose from starch), provides physiological glucose levels to fuel hMSCs via glycolysis. hMSCs loaded in these hydrogels and exposed to near anoxia (0.1% pO2) in vitro exhibited improved cell viability and angioinductive functions for up to 14 days. Most importantly, these nutritive hydrogels promoted hMSC viability and paracrine functions when implanted ectopically. Our findings suggest that local glucose delivery via the proposed nutritive hydrogel can be an efficient approach to improve hMSC-based therapeutic efficacy.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Supervivencia Celular , Glucosa/metabolismo , Almidón/metabolismo
3.
Biomaterials ; 303: 122387, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977007

RESUMEN

Endochondral ossification (ECO), the major ossification process during embryogenesis and bone repair, involves the formation of a cartilaginous template remodelled into a functional bone organ. Adipose-derived stromal cells (ASC), non-skeletal multipotent progenitors from the stromal vascular fraction (SVF) of human adipose tissue, were shown to recapitulate ECO and generate bone organs in vivo when primed into a hypertrophic cartilage tissue (HCT) in vitro. However, the reproducibility of ECO was limited and the major triggers remain unknown. We studied the effect of the expansion of cells and maturation of HCT on the induction of the ECO process. SVF cells or expanded ASC were seeded onto collagen sponges, cultured in chondrogenic medium for 3-6 weeks and implanted ectopically in nude mice to evaluate their bone-forming capacities. SVF cells from all tested donors formed mature HCT in 3 weeks whereas ASC needed 4-5 weeks. A longer induction increased the degree of maturation of the HCT, with a gradually denser cartilaginous matrix and increased mineralization. This degree of maturation was highly predictive of their bone-forming capacity in vivo, with ECO achieved only for an intermediate maturation degree. In parallel, expanding ASC also resulted in an enrichment of the stromal fraction characterized by a rapid change of their proteomic profile from a quiescent to a proliferative state. Inducing quiescence rescued their chondrogenic potential. Our findings emphasize the role of monolayer expansion and chondrogenic maturation degree of ASC on ECO and provides a simple, yet reproducible and effective approach for bone formation to be tested in specific clinical models.


Asunto(s)
Condrogénesis , Osteogénesis , Ratones , Animales , Humanos , Ratones Desnudos , Proteómica , Reproducibilidad de los Resultados , Células del Estroma , Diferenciación Celular , Células Cultivadas
4.
Stem Cells ; 38(1): 22-33, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408238

RESUMEN

In tissue engineering and regenerative medicine, stem cell-specifically, mesenchymal stromal/stem cells (MSCs)-therapies have fallen short of their initial promise and hype. The observed marginal, to no benefit, success in several applications has been attributed primarily to poor cell survival and engraftment at transplantation sites. MSCs have a metabolism that is flexible enough to enable them to fulfill their various cellular functions and remarkably sensitive to different cellular and environmental cues. At the transplantation sites, MSCs experience hostile environments devoid or, at the very least, severely depleted of oxygen and nutrients. The impact of this particular setting on MSC metabolism ultimately affects their survival and function. In order to develop the next generation of cell-delivery materials and methods, scientists must have a better understanding of the metabolic switches MSCs experience upon transplantation. By designing treatment strategies with cell metabolism in mind, scientists may improve survival and the overall therapeutic potential of MSCs. Here, we provide a comprehensive review of plausible metabolic switches in response to implantation and of the various strategies currently used to leverage MSC metabolism to improve stem cell-based therapeutics.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Humanos
5.
Sci Rep ; 8(1): 17106, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459360

RESUMEN

Use of human induced pluripotent stem cells (h-iPSCs) for bone tissue engineering is most appealing, because h-iPSCs are an inexhaustible source of osteocompetent cells. The present study investigated the contribution of undifferentiated h-iPSCs and elucidated aspects of the underlying mechanism(s) of the involvement of these cells to new bone formation. Implantation of undifferentiated h-iPSCs seeded on coral particles in ectopic sites of mice resulted in expression of osteocalcin and DMP-1, and in mineral content similar to that of the murine bone. The number of the implanted h-iPSCs decreased with time and disappeared by 30 days post-implantation. In contrast, expression of the murine osteogenic genes at day 15 and 30 post-implantation provided, for the first time, evidence that the implanted h-iPSCs affected the observed outcomes via paracrine mechanisms. Supporting evidence was provided because supernatant conditioned media from h-iPSCs (h-iPSC CM), promoted the osteogenic differentiation of human mesenchymal stem cells (h-MSCs) in vitro. Specifically, h-iPSC CM induced upregulation of the BMP-2, BMP-4 and BMP-6 genes, and promoted mineralization of the extracellular matrix. Given the current interest in the use of h-iPSCs for regenerative medicine applications, our study contributes new insights into aspects of the mechanism underlying the bone promoting capability of h-iPSCs.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Osteogénesis , Comunicación Paracrina , Animales , Proteínas Morfogenéticas Óseas/genética , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Medicina Regenerativa , Ingeniería de Tejidos , Regulación hacia Arriba
6.
J Tissue Eng Regen Med ; 12(3): e1511-e1524, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28875591

RESUMEN

In the present study, we evaluated the benefits of an adipogenic predifferentiation, the pathway most closely related to osteoblastogenesis, on the pro-osteogenic potential of human adult multipotent bone marrow stromal cells (hBMSCs), both in vitro and in vivo. Adipogenic differentiation of hBMSCs for 14 days resulted in a heterogeneous cell population from which the most adipogenic-committed cells were eliminated by their lack of readhesion ability. Our results provided evidence that the select adherent adipogenic differentiated hBMSCs (sAD+ cells) express a gene profile characteristic of both adipogenic and osteogenic lineages. In vitro, when cultured in osteogenic medium, sAD+ differentiated along the osteogenic lineage faster than undifferentiated hBMSCs. In vivo, in an ectopic mouse model, sAD+ exhibited a significantly higher bone formation capability compared with undifferentiated hBMSCs. We sought, then, to investigate the underlying mechanisms responsible for such beneficial effects of adipogenic predifferentiation on bone formation and found that this outcome was not linked to a better cell survival post-implantation. The secretome of sAD+ was both proangiogenic and chemoattractant, but its potential did not supersede the one of undifferentiated hBMSCs. However, using co-culture systems, we observed that the sAD+ paracrine factors were pro-osteogenic on undifferentiated hBMSCs. In conclusion, adipogenic priming endows hBMSCs with high osteogenic potential as well as pro-osteogenic paracrine-mediated activity. This preconditioning appears as a promising strategy for bone tissue engineering technology in order to improve the hBMSC osteogenic potency in vivo.


Asunto(s)
Adipogénesis , Huesos/fisiología , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos/métodos , Adipogénesis/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Huesos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Técnicas de Cocultivo , Femenino , Humanos , Isquemia/patología , Células Madre Mesenquimatosas/ultraestructura , Ratones Desnudos , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos
7.
Stem Cells ; 36(3): 363-376, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266629

RESUMEN

Mesenchymal stem cells (MSCs) hold considerable promise in tissue engineering (TE). However, their poor survival when exogenously administered limits their therapeutic potential. Previous studies from our group demonstrated that lack of glucose (glc) (but not of oxygen) is fatal to human MSCs because it serves as a pro-survival and pro-angiogenic molecule for human MSCs (hMSCs) upon transplantation. However, which energy-providing pathways MSCs use to metabolize glc upon transplantation? Are there alternative energetic nutrients to replace glc? And most importantly, do hMSCs possess significant intracellular glc reserves for ensuring their survival upon transplantation? These remain open questions at the forefront of TE based-therapies. In this study, we established for the first time that the in vivo environment experienced by hMSCs is best reflected by near-anoxia (0.1% O2 ) rather than hypoxia (1%-5% O2 ) in vitro. Under these near-anoxia conditions, hMSCs rely almost exclusively on glc through anerobic glycolysis for ATP production and are unable to use either exogenous glutamine, serine, or pyruvate as energy substrates. Most importantly, hMSCs are unable to adapt their metabolism to the lack of exogenous glc, possess a very limited internal stock of glc and virtually no ATP reserves. This lack of downregulation of energy turnover as a function of exogenous glc level results in a rapid depletion of hMSC energy reserves that explains their poor survival rate. These new insights prompt for the development of glc-releasing scaffolds to overcome this roadblock plaguing the field of TE based-therapies. Stem Cells 2018;36:363-376.


Asunto(s)
Supervivencia Celular/fisiología , Glucosa/metabolismo , Glucólisis/fisiología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular/fisiología , Hipoxia de la Célula/fisiología , Glutamina/metabolismo , Humanos , Oxígeno/metabolismo , Ingeniería de Tejidos
8.
Stem Cells ; 35(1): 181-196, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578059

RESUMEN

A major impediment to the development of therapies with mesenchymal stem cells/multipotent stromal cells (MSC) is the poor survival and engraftment of MSCs at the site of injury. We hypothesized that lowering the energetic demand of MSCs by driving them into a quiescent state would enhance their survival under ischemic conditions. Human MSCs (hMSCs) were induced into quiescence by serum deprivation (SD) for 48 hours. Such preconditioned cells (SD-hMSCs) exhibited reduced nucleotide and protein syntheses compared to unpreconditioned hMSCs. SD-hMSCs sustained their viability and their ATP levels upon exposure to severe, continuous, near-anoxia (0.1% O2 ) and total glucose depletion for up to 14 consecutive days in vitro, as they maintained their hMSC multipotential capabilities upon reperfusion. Most importantly, SD-hMSCs showed enhanced viability in vivo for the first week postimplantation in mice. Quiescence preconditioning modified the energy-metabolic profile of hMSCs: it suppressed energy-sensing mTOR signaling, stimulated autophagy, promoted a shift in bioenergetic metabolism from oxidative phosphorylation to glycolysis and upregulated the expression of gluconeogenic enzymes, such as PEPCK. Since the presence of pyruvate in cell culture media was critical for SD-hMSC survival under ischemic conditions, we speculate that these cells may utilize some steps of gluconeogenesis to overcome metabolic stress. These findings support that SD preconditioning causes a protective metabolic adaptation that might be taken advantage of to improve hMSC survival in ischemic environments. Stem Cells 2017;35:181-196.


Asunto(s)
Ciclo Celular , Isquemia/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metaboloma , Adenosina Trifosfato/metabolismo , Autofagia , Puntos de Control del Ciclo Celular , Supervivencia Celular , Células Cultivadas , Medio de Cultivo Libre de Suero , Humanos , Trasplante de Células Madre Mesenquimatosas , Reperfusión , Estrés Fisiológico
9.
Ann Transl Med ; 4(10): 204, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27294100

RESUMEN

The treatment of non-unions and bone defects is a major challenge. In these situations, autologous bone is the preferred treatment but has several serious limitations. Treatment alternatives including the use of calcium-based scaffolds alone or associated with either growth factors or stem cells have therefore been developed, or are under development, to overcome these shortcomings. Each of these are, however, associated with their own drawbacks, such as the lack of sustained/controlled delivery system for growth factors and poor cell survival and engraftment for stem cells. MicroRNAs (miRNAs), a class of small noncoding RNAs fine-tune the expression of as much as 30% of all mammalian protein-encoding genes. For instance, miRNA26a is able to promote the repair of critical-size calvarial bone defects. Yet, the clinical application of these fascinating molecules has been hampered by a lack of appropriate delivery systems. In an elegant report entitled cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects, Zhang et al. 2016, developped a non-viral vector with high affinity to miR-26a that ensured its efficient delivery in bone defects. Engineered scaffolds were able to induce the regeneration of calvarial bone defects in healthy and osteoporotic mice. Taken together, these data pave the way for the development of advanced bone substitutes that at least will match, and preferably supersede, the clinical efficiency of autologous bone grafts. However, the transfer from the bench to the bedside of such scaffolds requires further investigations including (I) a better understanding of the underlying biological mechanisms involved in bone formation via miRNA26a; (II) evidences of polymer scaffold biocompatibility upon its complete degradation; and (III) demonstration of the engineered scaffold functionality in defects of clinically relevant volume.

10.
Stem Cells Transl Med ; 4(7): 809-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25979862

RESUMEN

UNLABELLED: : Mesenchymal stem cells (MSCs) have captured the attention and research endeavors of the scientific world because of their differentiation potential. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly due to the multitude of bioactive mediators secreted by these cells. Because the paracrine potential of MSCs is closely related to their microenvironment, the present study investigated and characterized select aspects of the human MSC (hMSC) secretome and assessed its in vitro and in vivo bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. In contrast to supernatant conditioned media (CM) obtained from hMSCs cultured at either 5% or 21% of O2, CM from hMSCs cultured under near anoxia exhibited significantly (p < .05) enhanced chemotactic and proangiogenic properties and a significant (p < .05) decrease in the inflammatory mediator content. An analysis of the hMSC secretome revealed a specific profile under near anoxia: hMSCs increase their paracrine expression of the angiogenic mediators vascular endothelial growth factor (VEGF)-A, VEGF-C, interleukin-8, RANTES, and monocyte chemoattractant protein 1 but significantly decrease expression of several inflammatory/immunomodulatory mediators. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine and could contribute to improving the efficacy of such therapies. SIGNIFICANCE: The present study investigated and characterized select aspects of the human mesenchymal stem cell (hMSC) secretome and assessed its in vitro and in vivo biological bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. The present study provided the first evidence of a shift of the hMSC cytokine signature induced by oxygen tension, particularly near anoxia (0.1% O2). Conditioned media obtained from hMSCs cultured under near anoxia exhibited significantly enhanced chemotactic and proangiogenic properties and a significant decrease in the inflammatory mediator content. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine, could contribute to improving the efficacy of such therapies, and most importantly highlighted the interest in using conditioned media in therapeutic modalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...