Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbes Infect ; 26(4): 105305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296157

RESUMEN

The liver, and more specifically, the liver sinusoidal endothelial cells, constitute the beginning of one of the most important responses for the elimination of hematogenously disseminated Candida albicans. Therefore, we aimed to study the mechanisms involved in the interaction between these cells and C. albicans. Transcriptomics-based analysis showed an increase in the expression of genes related to the immune response (including receptors, cytokines, and adhesion molecules), as well as to aerobic glycolysis. Further in vitro analyses showed that IL-6 production in response to C. albicans is controlled by MyD88- and SYK-pathways, suggesting an involvement of Toll-like and C-type lectin receptors and the subsequent activation of the MAP-kinases and c-Fos/AP-1 transcription factor. In addition, liver sinusoidal endothelial cells undergo metabolic reprogramming towards aerobic glycolysis induced by C. albicans, as confirmed by the increased Extracellular Acidification Rate and the overexpression of enolase (Eno2), hexonikase (Hk2) and glucose transporter 1 (Slc2a1). In conclusion, these results indicate that the hepatic endothelium responds to C. albicans by increasing aerobic glycolysis and promoting an inflammatory environment.


Asunto(s)
Candida albicans , Células Endoteliales , Glucólisis , Hígado , Candida albicans/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Animales , Hígado/metabolismo , Hígado/microbiología , Quinasa Syk/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Inflamación/metabolismo , Perfilación de la Expresión Génica , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/metabolismo
2.
J Periodontal Res ; 58(6): 1272-1280, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787434

RESUMEN

OBJECTIVE: The aim of this study was to investigate metabolomics markers in the saliva of patients with periodontal health, gingivitis and periodontitis. BACKGROUND: The use of metabolomics for diagnosing and monitoring periodontitis is promising. Although several metabolites have been reported to be altered by inflammation, few studies have examined metabolomics in saliva collected from patients with different periodontal phenotypes. METHODS: Saliva samples collected from a total of 63 patients were analysed by nuclear magnetic resonance (NMR) followed by ELISA for interleukin (IL)-1ß. The patient sample, well-characterised clinically, included periodontal health (n = 8), gingivitis (n = 19) and periodontitis (n = 36) cases, all non-smokers and not diabetic. RESULTS: Periodontal diagnosis (healthy/gingivitis/periodontitis) was not associated with any salivary metabolites in this exploratory study. Periodontal staging showed nominal associations with acetoin (p = .030) and citrulline (p = .047). Among other investigated variables, the use of systemic antibiotics in the previous 3 months was associated with higher values of the amino acids taurine, glycine and ornithine (p = .002, p = .05 and p = .005, respectively, at linear regression adjusted for age, gender, ethnicity, body mass index and staging). CONCLUSION: While periodontal staging was marginally associated with some salivary metabolites, other factors such as systemic antibiotic use may have a much more profound effect on the microbial metabolites in saliva. Metabolomics in periodontal disease is still an underresearched area that requires further observational studies on large cohorts of patients, aiming to obtain data to be used for clinical translation.


Asunto(s)
Gingivitis , Enfermedades Periodontales , Periodontitis , Humanos , Saliva/química , Periodontitis/metabolismo , Gingivitis/metabolismo , Enfermedades Periodontales/metabolismo , Biomarcadores/metabolismo
3.
Infect Dis Rep ; 15(3): 238-254, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37218816

RESUMEN

Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT).

4.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066428

RESUMEN

Candida albicans is a fungal pathobiont colonising mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonisation is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or 'pathogenesis'. Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2 and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1ß release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.

5.
Microb Genom ; 9(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897935

RESUMEN

The diversity of microbial insertion sequences, crucial mobile genetic elements in generating diversity in microbial genomes, needs to be better represented in current microbial databases. Identification of these sequences in microbiome communities presents some significant problems that have led to their underrepresentation. Here, we present a bioinformatics pipeline called Palidis that recognizes insertion sequences in metagenomic sequence data rapidly by identifying inverted terminal repeat regions from mixed microbial community genomes. Applying Palidis to 264 human metagenomes identifies 879 unique insertion sequences, with 519 being novel and not previously characterized. Querying this catalogue against a large database of isolate genomes reveals evidence of horizontal gene transfer events across bacterial classes. We will continue to apply this tool more widely, building the Insertion Sequence Catalogue, a valuable resource for researchers wishing to query their microbial genomes for insertion sequences.


Asunto(s)
Bacterias , Elementos Transponibles de ADN , Humanos , Bacterias/genética , Biología Computacional , Genoma Microbiano , Metagenómica
6.
Infect Immun ; 91(2): e0033322, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36625602

RESUMEN

The human lung is constantly exposed to Aspergillus fumigatus spores, the most prevalent worldwide cause of fungal respiratory disease. Pulmonary tissue damage is a unifying feature of Aspergillus-related diseases; however, the mechanistic basis of damage is not understood. In the lungs of susceptible hosts, A. fumigatus undergoes an obligatory morphological switch involving spore germination and hyphal growth. We modeled A. fumigatus infection in cultured A549 human pneumocytes, capturing the phosphoactivation status of five host signaling pathways, nuclear translocation and DNA binding of eight host transcription factors, and expression of nine host response proteins over six time points encompassing exposures to live fungus and the secretome thereof. The resulting data set, comprised of more than 1,000 data points, reveals that pneumocytes mount differential responses to A. fumigatus spores, hyphae, and soluble secreted products via the NF-κB, JNK, and JNK + p38 pathways, respectively. Importantly, via selective degradation of host proinflammatory (IL-6 and IL-8) cytokines and growth factors (FGF-2), fungal secreted products reorchestrate the host response to fungal challenge as well as driving multiparameter epithelial damage, culminating in cytolysis. Dysregulation of NF-κB signaling, involving sequential stimulation of canonical and noncanonical signaling, was identified as a significant feature of host damage both in vitro and in a mouse model of invasive aspergillosis. Our data demonstrate that composite tissue damage results from iterative (repeated) exposures to different fungal morphotypes and secreted products and suggest that modulation of host responses to fungal challenge might represent a unified strategy for therapeutic control of pathologically distinct types of Aspergillus-related disease.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Animales , Ratones , Humanos , FN-kappa B/metabolismo , Pulmón/microbiología , Homeostasis , Esporas Fúngicas
7.
Gut Microbes ; 14(1): 2121576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151873

RESUMEN

Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Micobioma , Hongos , Humanos , Interacciones Microbianas
8.
Commun Biol ; 5(1): 1013, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163459

RESUMEN

Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species-C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease.


Asunto(s)
Candida , Cisteína , Arginina/metabolismo , Candida/genética , Candida/metabolismo , Carbohidratos , Colina/metabolismo , Cisteína/metabolismo , Ácidos Grasos/metabolismo , Humanos , Metionina/metabolismo , Poliaminas/metabolismo
9.
J Biol Chem ; 298(10): 102419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037968

RESUMEN

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Asunto(s)
Candida albicans , Candidiasis Bucal , Receptores ErbB , Proteínas Fúngicas , Mucosa Bucal , Humanos , Candida albicans/metabolismo , Candida albicans/patogenicidad , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Candidiasis Bucal/metabolismo , Candidiasis Bucal/microbiología , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología
10.
iScience ; 25(7): 104513, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754734

RESUMEN

The human gut microbiome has been associated with metabolic disorders including obesity, type 2 diabetes, and atherosclerosis. Understanding the contribution of microbiome metabolic changes is important for elucidating the role of gut bacteria in regulating metabolism. We used available metagenomics data from these metabolic disorders, together with genome-scale metabolic modeling of key bacteria in the individual and community-level to investigate the mechanistic role of the gut microbiome in metabolic diseases. Modeling predicted increased levels of glutamate consumption along with the production of ammonia, arginine, and proline in gut bacteria common across the disorders. Abundance profiles and network-dependent analysis identified the enrichment of tartrate dehydrogenase in the disorders. Moreover, independent plasma metabolite levels showed associations between metabolites including proline and tyrosine and an increased tartrate metabolism in healthy obese individuals. We, therefore, propose that an increased tartrate metabolism could be a significant mediator of the microbiome metabolic changes in metabolic disorders.

11.
Sci Signal ; 15(728): eabj6915, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35380879

RESUMEN

The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Sistema de Señalización de MAP Quinasas , Animales , Candida albicans/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Ratones , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Pathogens ; 11(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215128

RESUMEN

Microscopic fungi are widely present in the environment and, more importantly, are also an essential part of the human healthy mycobiota. However, many species can become pathogenic under certain circumstances, with Candida spp. being the most clinically relevant fungi. In recent years, the importance of metabolism and nutrient availability for fungi-host interactions have been highlighted. Upon activation, immune and other host cells reshape their metabolism to fulfil the energy-demanding process of generating an immune response. This includes macrophage upregulation of glucose uptake and processing via aerobic glycolysis. On the other side, Candida modulates its metabolic pathways to adapt to the usually hostile environment in the host, such as the lumen of phagolysosomes. Further understanding on metabolic interactions between host and fungal cells would potentially lead to novel/enhanced antifungal therapies to fight these infections. Therefore, this review paper focuses on how cellular metabolism, of both host cells and Candida, and the nutritional environment impact on the interplay between host and fungal cells.

13.
mBio ; 13(1): e0351021, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073742

RESUMEN

Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi. IMPORTANCE Pathogenic fungi kill an estimated 1.5 million people every year. Recently, we discovered that the fungal pathogen Candida albicans secretes a peptide toxin called candidalysin during mucosal infection. Candidalysin causes damage to host cells, a process that supports disease progression. However, fungal infections are also caused by Candida species other than C. albicans. In this work, we identify and characterize two additional candidalysin toxins present in the related fungal pathogens C. dubliniensis and C. tropicalis. While the three candidalysins have different amino acid sequences, all three toxins are α-helical and amphipathic. Notably, the candidalysins from C. dubliniensis and C. tropicalis are more potent at inducing cell damage, calcium influx, mitogen-activated protein kinase signaling, and cytokine responses than C. albicans candidalysin, with the C. dubliniensis candidalysin having the most rapid membrane binding kinetics. These observations identify the candidalysins as the first family of peptide toxins in human-pathogenic fungi.


Asunto(s)
Micotoxinas , Humanos , Calcio/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Candida tropicalis , Péptidos/metabolismo , Citocinas/metabolismo
15.
Cell Microbiol ; 23(10): e13371, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34085369

RESUMEN

Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.


Asunto(s)
Candidiasis , Proteínas Fúngicas , Candida albicans , Células Epiteliales , Humanos , Necrosis
16.
mBio ; 12(3): e0053121, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34154403

RESUMEN

Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen, Candida albicans. Albumin was introduced in various in vitro models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of C. albicans to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by C. albicans. Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections. IMPORTANCE Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Thus, albumin may have specific functions during infection. Here, we describe the ability of albumin to neutralize hydrophobic microbial toxins. We show that albumin can protect against damage induced by the pathogenic yeast C. albicans by neutralizing its cytolytic toxin candidalysin. These findings suggest that albumin is a toxin-neutralizing protein that may play a role during infections with toxin-producing microorganisms.


Asunto(s)
Albúminas/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Membrana Mucosa/microbiología , Candidiasis/microbiología , Línea Celular , Células Cultivadas , Femenino , Proteínas Fúngicas/biosíntesis , Células HT29 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Vagina/citología , Factores de Virulencia
17.
Trends Microbiol ; 29(2): 158-170, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32448763

RESUMEN

There has been an explosion of metagenomic data representing human, animal, and environmental microbiomes. This provides an unprecedented opportunity for comparative and longitudinal studies of many functional aspects of the microbiome that go beyond taxonomic classification, such as profiling genetic determinants of antimicrobial resistance, interactions with the host, potentially clinically relevant functions, and the role of mobile genetic elements (MGEs). One of the most important but least studied of these aspects are the MGEs, collectively referred to as the 'mobilome'. Here we elaborate on the benefits and limitations of using different metagenomic protocols, discuss the relative merits of various sequencing technologies, and highlight relevant bioinformatics tools and pipelines to predict the presence of MGEs and their microbial hosts.


Asunto(s)
Bacterias/genética , Microbiota , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Humanos , Secuencias Repetitivas Esparcidas , Metagenoma , Metagenómica
18.
mBio ; 13(1): e0314421, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35089096

RESUMEN

Oral squamous cell carcinoma (OSCC) is associated with oral Candida albicans infection, although it is unclear whether the fungus promotes the genesis and progression of OSCC or whether cancer facilitates fungal growth. In this study, we investigated whether C. albicans can potentiate OSCC tumor development and progression. In vitro, the presence of live C. albicans, but not Candida parapsilosis, enhanced the progression of OSCC by stimulating the production of matrix metalloproteinases, oncometabolites, protumor signaling pathways, and overexpression of prognostic marker genes associated with metastatic events. C. albicans also upregulated oncogenes in nonmalignant cells. Using a newly established xenograft in vivo mouse model to investigate OSCC-C. albicans interactions, oral candidiasis enhanced the progression of OSCC through inflammation and induced the overexpression of metastatic genes and significant changes in markers of the epithelial-mesenchymal transition. Finally, using the 4-nitroquinoline 1-oxide (4NQO) murine model, we directly correlate these in vitro and short-term in vivo findings with the progression of oncogenesis over the long term. Taken together, these data indicate that C. albicans upregulates oncogenes, potentiates a premalignant phenotype, and is involved in early and late stages of malignant promotion and progression of oral cancer. IMPORTANCE Oral squamous cell carcinoma (OSCC) is a serious health issue worldwide that accounts for 2% to 4% of all cancer cases. Previous studies have revealed a higher yeast carriage and diversity in oral cancer patients than in healthy individuals. Furthermore, fungal colonization in the oral cavity bearing OSCC is higher on the neoplastic epithelial surface than on adjacent healthy surfaces, indicating a positive association between oral yeast carriage and epithelial carcinoma. In addition to this, there is strong evidence supporting the idea that Candida contributes to carcinogenesis events in the oral cavity. Here, we show that an increase in Candida albicans burden promotes an oncogenic phenotype in the oral cavity.


Asunto(s)
Candidiasis Bucal , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Ratones , Animales , Candida albicans/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Carcinogénesis/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-32195196

RESUMEN

The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Interacciones Microbiota-Huesped , Inmunidad Innata , Inmunidad Mucosa , Animales , Candida albicans/metabolismo , Candida albicans/patogenicidad , Candidiasis/metabolismo , Candidiasis/microbiología , Células Epiteliales/metabolismo , Humanos , Memoria Inmunológica , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...