Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
2.
Article En | MEDLINE | ID: mdl-38563984

PURPOSE: Biological factors and mechanisms that drive higher prevalence of insomnia in females are poorly understood. This study focused on the neurological consequences of X-chromosome functional imbalances between sexes. METHODS: Benefited from publicly available large-scale genetic, transcriptional and epigenomic data, we curated and contrasted different gene lists: (1) X-liked genes, including assignments for X-chromosome inactivation patterns and disease associations; (2) sleep-associated genes; (3) gene expression markers for the suprachiasmatic nucleus. RESULTS: We show that X-linked markers for the suprachiasmatic nucleus are significantly enriched for clinically relevant genes in the context of rare genetic syndromes and brain waves modulation. CONCLUSION: Considering female-specific patterns on brain transcriptional programs becomes essential when designing health care strategies for mental and sleep illnesses with sex bias in prevalence.

3.
Sleep Med ; 119: 44-52, 2024 Mar 24.
Article En | MEDLINE | ID: mdl-38640740

OBJECTIVES: Polygenic scores (PGS) for sleep disturbances and depressive symptoms in an epidemiological cohort were contrasted. The overlap between genes assigned to variants that compose the PGS predictions was tested to explore the shared genetic bases of sleep problems and depressive symptoms. METHODS: PGS analysis was performed on the São Paulo Epidemiologic Sleep Study (EPISONO, N = 1042), an adult epidemiological sample. A genome wide association study (GWAS) for depression grounded the PGS calculations for Beck Depression Index (BDI), while insomnia GWAS based the PGS for Insomnia Severity Index (ISI) and Pittsburg Sleep Quality Index (PSQI). Pearson's correlation was applied to contrast PGS and clinical scores. Fisher's Exact and Benjamin-Hochberg tests were used to verify the overlaps between PGS-associated genes and the pathways enriched among their intersections. RESULTS: All PGS models were significant when individuals were divided as cases or controls according to BDI (R2 = 1.2%, p = 0.00026), PSQI (R2 = 3.3%, p = 0.007) and ISI (R2 = 3.4%, p = 0.021) scales. When clinical scales were used as continuous variables, the PGS models for BDI (R2 = 1.5%, p = 0.0004) and PSQI scores (R2 = 3.3%, p = 0.0057) reached statistical significance. PSQI and BDI scores were correlated, and the same observation was applied to their PGS. Genes assigned to variants that compose the best-fit PGS predictions for sleep quality and depressive symptoms were significantly overlapped. Pathways enriched among the intersect genes are related to synapse function. CONCLUSIONS: The genetic bases of sleep quality and depressive symptoms are correlated; their implicated genes are significantly overlapped and converge on neural pathways. This data suggests that sleep complaints accompanying depressive symptoms are not secondary issues, but part of the core mental illness.

4.
Sleep Med ; 117: 146-151, 2024 May.
Article En | MEDLINE | ID: mdl-38537522

Sleep is crucial for memory, as it promotes its encoding, consolidation, storage, and retrieval. Sleep periods following learning enhance memory consolidation. Leptin, a hormone that regulates appetite and energy balance, also influences memory and neuroplasticity. It plays a neurotrophic role in the hippocampus, enhancing synaptic function and promoting memory processes. Given these associations between sleep, memory, and leptin, this study aimed to evaluate the interplay between sleep quality, memory complaints and leptin levels. Using data from the São Paulo Epidemiologic Sleep Study (EPISONO) 2007 edition, we analyzed data from 881 participants who underwent evaluations for subjective sleep quality (Pittsburgh Sleep Quality Index), memory function (Prospective and Retrospective Memory Questionnaire), body mass index and plasmatic leptin levels. After confirming that subjects with poor sleep quality had more memory complaints in our cohort, we observed that leptin levels were increased in individuals with more memory complaints, but there was no association between leptin levels and sleep quality. Mediation analysis reinforced the direct effect of sleep quality on memory function, but leptin had no indirect effect as mediator over the sleep-memory association. Moderation analysis revealed that leptin acted as a moderator in the relationship between sleep quality and memory, with increased leptin levels enhancing the effect of sleep quality over memory function. These findings underscore the intricate interplay between sleep, memory, and metabolic factors like leptin, shedding light on potential mechanisms through which sleep influences memory and cognitive functions. Further research is needed to elucidate the exact mechanisms underlying these relationships and their implications for overall health and well-being.


Leptin , Sleep Quality , Humans , Retrospective Studies , Prospective Studies , Brazil , Sleep/physiology
6.
J Med Genet ; 61(6): 586-589, 2024 May 21.
Article En | MEDLINE | ID: mdl-38350721

Pogo transposable element-derived protein with ZNF domain (POGZ) gene encodes a chromatin regulator and rare variants on this gene have been associated with a broad spectrum of neurodevelopmental disorders, such as White-Sutton syndrome. Patient clinical manifestations frequently include developmental delay, autism spectrum disorder and obesity. Sleep disturbances are also commonly observed in these patients, yet the biological pathways which link sleep traits to the POGZ-associated syndrome remain unclear. We screened for sleep implications among individuals with causative POGZ variants previously described. Sleep disturbances were observed in 52% of patients, and being obese was not observed as a risk factor for sleep problems. Next, we identified genes associated with sleep-associated traits among the POGZ regulatory targets, aiming to uncover the molecular pathways that, when disrupted by POGZ loss of function, contribute to the aetiology of sleep phenotypes in these patients. The intersect between POGZ targets and sleep-related genes was used in a pathway enrichment analysis. Relevant pathways among these overlapping genes are involved in the regulation of circadian rhythm, tau protein binding, ATPase activator activity. This study may represent the beginning for novel functional investigations on shared molecular mechanisms between sleep disturbances and rare developmental syndromes related to POGZ and its regulatory targets.


Neurodevelopmental Disorders , Phenotype , Sleep Wake Disorders , Humans , Neurodevelopmental Disorders/genetics , Sleep Wake Disorders/genetics , Male , Female , Sleep/genetics , Child , Child, Preschool , Circadian Rhythm/genetics , DNA-Binding Proteins , Cell Cycle Proteins
7.
Sleep Breath ; 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38315317

PURPOSE: Our study aimed to evaluate the impact of the menstrual cycle stages, especially menses, on sleep, inflammatory mediators, fatigue, anxiety, depression, and quality of life. METHODS: We used data from the EPISONO study cohort, selecting 96 women who had undergone one-night polysomnography. The women were distributed in three groups according to the time point of the menstrual cycle on the polysomnography night: menses, mid/late follicular phase, and luteal phase. The volunteers completed questionnaires related to sleep quality, daytime sleepiness, insomnia, fatigue, anxiety, depression, and quality of life. Blood samples were collected to analyze interleukin 6, tumor necrosis factor-alpha, and C-reactive protein. RESULTS: Sleep efficiency was statistically higher in women in the mid/late follicular group (89.9% ± 9.6) compared to menstrual (83.0% ± 10.8) and luteal (83.7% ± 12.7) groups. The mid/late follicular group presented a statistically significant reduction in sleep onset latency (7.1 ± 7.1 min) compared to the menstrual (22.3 ± 32.4 min) and luteal groups (15.9 ± 14.7 min). No statistical differences among the three groups were observed in other polysomnographic parameters, inflammatory mediators, daytime sleepiness, insomnia, fatigue, anxiety, depression, and quality of life. CONCLUSIONS: Our findings demonstrate that the mid/late follicular phase might be beneficial for women's sleep, although there were no statistically changes in inflammatory mediators among the groups.

8.
Cell Rep Methods ; 4(1): 100672, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38091988

New technologies and large-cohort studies have enabled novel variant discovery and association at unprecedented scale, yet functional characterization of these variants remains paramount to deciphering disease mechanisms. Approaches that facilitate parallelized genome editing of cells of interest or induced pluripotent stem cells (iPSCs) have become critical tools toward this goal. Here, we developed an approach that incorporates libraries of CRISPR-Cas9 guide RNAs (gRNAs) together with inducible Cas9 into a piggyBac (PB) transposon system to engineer dozens to hundreds of genomic variants in parallel against isogenic cellular backgrounds. This method empowers loss-of-function (LoF) studies through the introduction of insertions or deletions (indels) and copy-number variants (CNVs), though generating specific nucleotide changes is possible with prime editing. The ability to rapidly establish high-quality mutational models at scale will facilitate the development of isogenic cellular collections and catalyze comparative functional genomic studies investigating the roles of hundreds of genes and mutations in development and disease.


CRISPR-Cas Systems , Induced Pluripotent Stem Cells , Humans , Gene Editing/methods , Mutation , Genomics
9.
Int J Impot Res ; 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37990110

Erectile dysfunction (ED) incidence is higher in patients with obstructive sleep apnea (OSA). Studies have suggested that ED and OSA may activate similar pathways; however, few have investigated the links between their underlying genotypic profiles. Therefore, we conducted an in-silico analysis to test whether ED and OSA share genetic variants of risk and to identify any molecular, cellular and biological interactions between them. Two gene lists were manually curated through a literature review based on a PUBMED search, which resulted in one gene list associated with ED (total of 205 genes) and the other with OSA (total of 2622 genes). Between those gene sets, 35 were common for both lists (Fisher exact test, p-value = 0.027). The Protein-protein interaction (PPI) analysis using the intersect list as input showed that 3 of them had direct interactions (LPL, DGKB and PLCB1). In addition, the biological function of the genes contained in the intersect list suggested that pathways related to lipid metabolism and the neuromuscular junction were commonly found in the genetic basis of ED and OSA. From the shared genes between both conditions, the biological pathways highlighted in this study may serve as preliminary findings for future functional investigations on OSA and ED association.

10.
Sleep Med ; 112: 9-11, 2023 12.
Article En | MEDLINE | ID: mdl-37801861

Neurodevelopmental disorders (NDD) are characterized by cognitive, emotional, and/or motor skills impairment since childhood, and sleep disturbances are a common comorbidity. Rubinstein-Taybi syndrome (RSTS), a rare genetic syndrome associated with NDD, is caused by CREBBP haploinsufficiency. This gene encodes an acetyltransferase with crucial role on the establishment of transcriptional programs during neurodevelopment. Although insomnia has been reported in RSTS patients, the convergent mechanisms between this sleep disturbance and CREBBP loss-of-function are not fully understood. We tested weather the genetic architecture underlying CREBBP regulatory targets and insomnia-associated genes is significantly shared. We then identified the biological pathways enriched among these shared genes. The intersection between CREBBP regulatory targets and genes associated with insomnia included 7 overlapping genes, indicating significantly more overlap than expected by chance. An over-representation analysis on these intersect genes identified pathways related to mitochondrial activity. This finding indicates that the transcriptional programs established by CREBBP might impact insomnia-related biological pathways through the modulation of energy metabolism. The overlapping gene set and biological pathways highlighted by this study may serve as a primer for new functional investigations of shared molecular mechanisms between insomnia and CREBBP regulatory targets.


Rubinstein-Taybi Syndrome , Sleep Initiation and Maintenance Disorders , Humans , Child , Mutation , Sleep Initiation and Maintenance Disorders/genetics , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Energy Metabolism/genetics , Emotions , Phenotype
11.
Rejuvenation Res ; 26(5): 206-213, 2023 Oct.
Article En | MEDLINE | ID: mdl-37694591

The amount of sleep needed over one's lifespan is age dependent and not sleeping enough or sleeping in excess is associated with increased morbidity and mortality. Yet, the convergent molecular mechanisms that link longevity and sleep are largely unknown. We performed a gene enrichment study that (1) identified genes associated with both longevity and sleep traits and (2) determined molecular pathways enriched among these shared genes. We manually curated two sets of genes, one associated with longevity and aging and the other with sleep traits (e.g., insomnia, narcolepsy, sleep duration, chronotype, among others), with both gene lists heavily driven by hits from recent large-scale Genome-Wide Association Studies. There were 47 overlapping genes between the gene list associated with sleep traits (1064 genes total) and the genes associated with longevity (367 genes total), indicating significantly more overlap than expected by chance. An overrepresentation analysis identified enriched pathways that suggest endocrine and epigenetic regulation as potential shared mechanisms between sleep traits and longevity. Concordantly, functional network analysis retrieved two clusters, being one associated with proteins of nuclear functions and the other, with extracellular proteins. This overlapping gene set, and the highlighted biological pathways may serve as preliminary findings for new functional investigations of sleep and longevity shared genetic mechanisms.


Epigenesis, Genetic , Longevity , Longevity/genetics , Genome-Wide Association Study , Sleep/genetics
14.
Epigenetics Chromatin ; 16(1): 19, 2023 05 19.
Article En | MEDLINE | ID: mdl-37202802

BACKGROUND: Patients with balanced X-autosome translocations and premature ovarian insufficiency (POI) constitute an interesting paradigm to study the effect of chromosome repositioning. Their breakpoints are clustered within cytobands Xq13-Xq21, 80% of them in Xq21, and usually, no gene disruption can be associated with POI phenotype. As deletions within Xq21 do not cause POI, and since different breakpoints and translocations with different autosomes lead to this same gonadal phenotype, a "position effect" is hypothesized as a possible mechanism underlying POI pathogenesis. OBJECTIVE AND METHODS: To study the effect of the balanced X-autosome translocations that result in POI, we fine-mapped the breakpoints in six patients with POI and balanced X-autosome translocations and addressed gene expression and chromatin accessibility changes in four of them. RESULTS: We observed differential expression in 85 coding genes, associated with protein regulation, multicellular regulation, integrin signaling, and immune response pathways, and 120 differential peaks for the three interrogated histone marks, most of which were mapped in high-activity chromatin state regions. The integrative analysis between transcriptome and chromatin data pointed to 12 peaks mapped less than 2 Mb from 11 differentially expressed genes in genomic regions not related to the patients' chromosomal rearrangement, suggesting that translocations have broad effects on the chromatin structure. CONCLUSION: Since a wide impact on gene regulation was observed in patients, our results observed in this study support the hypothesis of position effect as a pathogenic mechanism for premature ovarian insufficiency associated with X-autosome translocations. This work emphasizes the relevance of chromatin changes in structural variation, since it advances our knowledge of the impact of perturbations in the regulatory landscape within interphase nuclei, resulting in the position effect pathogenicity.


Primary Ovarian Insufficiency , Female , Humans , Primary Ovarian Insufficiency/genetics , Translocation, Genetic , Gene Expression Regulation , Gene Expression , Chromatin
15.
Cell Genom ; 3(4): 100277, 2023 Apr 12.
Article En | MEDLINE | ID: mdl-37082147

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder characterized by deficits in social interactions and communication. Protein-altering variants in many genes have been shown to contribute to ASD; however, understanding the convergence across many genes remains a challenge. We demonstrate that coexpression patterns from 993 human postmortem brains are significantly correlated with the transcriptional consequences of CRISPR perturbations in human neurons. Across 71 ASD risk genes, there was significant tissue-specific convergence implicating synaptic pathways. Tissue-specific convergence was further demonstrated across schizophrenia and atrial fibrillation risk genes. The degree of ASD convergence was significantly correlated with ASD association from rare variation and differential expression in ASD brains. Positively convergent genes showed intolerance to functional mutations and had shorter coding lengths than known risk genes even after removing association with ASD. These results indicate that convergent coexpression can identify potentially novel genes that are unlikely to be discovered by sequencing studies.

16.
J Neurosci Res ; 101(7): 1058-1067, 2023 07.
Article En | MEDLINE | ID: mdl-36791049

Sleep-related phenotypes have been frequently reported in early on-set epileptic encephalopathies and in developmental delay syndromes, in particular in syndromes related to autism spectrum disorder. Yet the convergent pathogenetic mechanisms between these comorbidities are largely unknown. We first performed a gene enrichment study that identified shared risk genes among rare epileptic encephalopathies/neurodevelopmental disorders, rare developmental delay genetic syndromes and sleep disturbances. We then determined cellular and molecular pathways enriched among genes shared between sleep phenotypes and those two early onset mental illnesses, aiming to identify genetic disparities and commonalities among these phenotypic groups. The sleep gene set was observed as significantly overlapped with the two gene lists associated to rare genetic syndromes (i.e., epileptic encephalopathies/neurodevelopmental disorders and developmental delay gene sets), suggesting shared genetic contribution. Similarities across significantly enriched pathways between the two intersect lists comprehended mostly synapse-related pathways, such as retrograde endocannabinoid signaling, serotonergic, and GABAergic synapse. Network analysis indicates epileptic encephalopathies/neurodevelopmental disorders versus sleep-specific clusters and developmental delay versus sleep-specific clusters related to synaptic and transcriptional regulation, respectively. Longstanding functional patterns previously described in epileptic encephalopathies and neurodevelopmental disorders genetic architecture were recaptured after dissecting the overlap between the genes associated to those developmental phenotypes and sleep disturbances, suggesting that during neurodevelopment different molecular and functional mechanisms are related to alterations on circadian rhythm. The overlapping gene set and biological pathways highlighted by this study may serve as a primer for new functional investigations of shared molecular mechanisms between sleep disturbances and rare developmental syndromes.


Autism Spectrum Disorder , Brain Diseases , Sleep Wake Disorders , Humans , Syndrome , Autism Spectrum Disorder/genetics , Phenotype , Sleep Wake Disorders/genetics , Sleep/genetics
17.
Am J Hum Genet ; 110(2): 300-313, 2023 02 02.
Article En | MEDLINE | ID: mdl-36706759

While extensively studied in clinical cohorts, the phenotypic consequences of 22q11.2 copy-number variants (CNVs) in the general population remain understudied. To address this gap, we performed a phenome-wide association scan in 405,324 unrelated UK Biobank (UKBB) participants by using CNV calls from genotyping array. We mapped 236 Human Phenotype Ontology terms linked to any of the 90 genes encompassed by the region to 170 UKBB traits and assessed the association between these traits and the copy-number state of 504 genotyping array probes in the region. We found significant associations for eight continuous and nine binary traits associated under different models (duplication-only, deletion-only, U-shape, and mirror models). The causal effect of the expression level of 22q11.2 genes on associated traits was assessed through transcriptome-wide Mendelian randomization (TWMR), revealing that increased expression of ARVCF increased BMI. Similarly, increased DGCR6 expression causally reduced mean platelet volume, in line with the corresponding CNV effect. Furthermore, cross-trait multivariable Mendelian randomization (MVMR) suggested a predominant role of genuine (horizontal) pleiotropy in the CNV region. Our findings show that within the general population, 22q11.2 CNVs are associated with traits previously linked to genes in the region, and duplications and deletions act upon traits in different fashions. We also showed that gain or loss of distinct segments within 22q11.2 may impact a trait under different association models. Our results have provided new insights to help further the understanding of the complex 22q11.2 region.


DNA Copy Number Variations , Phenomics , Humans , DNA Copy Number Variations/genetics , Phenotype , Chromosomes, Human, Pair 22
18.
Sleep Med Clin ; 18(4): 521-531, 2023 Dec.
Article En | MEDLINE | ID: mdl-38501524

Biological factors and mechanisms that drive sex differences observed in sleep disturbances are understudied and poorly understood. The extent to which sex chromosome constitution impacts on sex differences in circadian patterns is still a knowledge void in the sleep medicine field. Here we focus on the neurological consequences of X-chromosome functional imbalances between males and females and how this molecular inequality might affect sex divergencies on sleep. In light of the X-chromosome inactivation mechanism in females and its implications in gene regulation, we describe sleep-related neuronal circuits and brain regions impacted by sex-biased modulations of the transcriptome and the epigenome. Benefited from recent large-scale genetic studies on the interplay between X-chromosome and brain function, we list clinically relevant genes that might play a role in sex differences in neuronal pathways. Those molecular signatures are put into the context of sleep and sleep-associated neurological phenotypes, aiming to identify biological mechanisms that link X-chromosome gene regulation to sex-biased human traits. These findings are a significant step forward in understanding how X-linked genes manifest in sleep-associated transcriptional networks and point to future research opportunities to address female-specific clinical manifestations and therapeutic responses.


X Chromosome Inactivation , X Chromosome , Female , Humans , Male , Phenotype
19.
Am J Hum Genet ; 109(11): 2049-2067, 2022 11 03.
Article En | MEDLINE | ID: mdl-36283406

Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.


Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , Genome , Haploinsufficiency , MEF2 Transcription Factors/genetics , Neurons , Transcription, Genetic
20.
Am J Med Genet A ; 185(7): 2056-2064, 2021 07.
Article En | MEDLINE | ID: mdl-33880880

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder characterized by anomalies mainly involving the structures derived from the first and second pharyngeal arches. The spectrum presents with heterogeneous clinical features and complex etiology with genetic factors not yet completely understood. To date, MYT1 is the most important gene unambiguously associated with the spectrum and with functional data confirmation. In this work, we aimed to identify new single nucleotide variants (SNVs) affecting MYT1 in a cohort of 73 Brazilian patients diagnosed with OAVS. In addition, we investigated copy number variations (CNVs) encompassing this gene or its cis-regulatory elements and compared the frequency of these events in patients versus a cohort of 455 Brazilian control individuals. A new SNV, predicted as likely deleterious, was identified in five unrelated patients with OAVS. All five patients presented hearing impairment and orbital asymmetry suggesting an association with the variant. CNVs near MYT1, located in its neighboring topologically associating domain (TAD), were found to be enriched in patients when compared to controls, indicating a possible involvement of this region with OAVS pathogenicity. Our findings highlight the genetic complexity of the spectrum that seems to involve more than one variant type and inheritance patterns.


DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Goldenhar Syndrome/genetics , Transcription Factors/genetics , Branchial Region/pathology , Brazil/epidemiology , DNA Copy Number Variations/genetics , Female , Goldenhar Syndrome/epidemiology , Goldenhar Syndrome/pathology , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics
...