Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3358, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637520

RESUMEN

Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet. However, high-throughput technology for single-photon generation at 1550 nm remained a missing building block to overcome present limitations in quantum communication and information technologies. Here, we demonstrate the high-throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots. Our technique enables the deterministic integration of single pre-selected quantum emitters into microcavities based on circular Bragg gratings. Respective devices feature the triggered generation of single photons with ultra-high purity and record-high photon indistinguishability. Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.

2.
Opt Express ; 32(7): 10874-10886, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570950

RESUMEN

Quantum information processing with photons in small-footprint and highly integrated silicon-based photonic chips requires incorporating non-classical light sources. In this respect, self-assembled III-V semiconductor quantum dots (QDs) are an attractive solution, however, they must be combined with the silicon platform. Here, by utilizing the large-area direct bonding technique, we demonstrate the hybridization of InP and SOI chips, which allows for coupling single photons to the SOI chip interior, offering cost-effective scalability in setting up a multi-source environment for quantum photonic chips. We fabricate devices consisting of self-assembled InAs QDs embedded in the tapered InP waveguide (WG) positioned over the SOI-defined Si WG. Focusing on devices generating light in the telecom C-band compatible with the low-loss optical fiber networks, we demonstrate the light coupling between InP and SOI platforms by observing photons outcoupled at the InP-made circular Bragg grating outcoupler fabricated at the end of an 80 µm-long Si WG, and at the cleaved edge of the Si WG. Finally, for a device with suppressed multi-photon generation events exhibiting 80% single photon generation purity, we measure the photon number outcoupled at the cleaved facet of the Si WG. We estimate the directional on-chip photon coupling between the source and the Si WG to 5.1%.

3.
ACS Photonics ; 10(5): 1504-1511, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37215325

RESUMEN

Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.

4.
Opt Express ; 31(2): 1541-1556, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785187

RESUMEN

We demonstrate comprehensive numerical studies on a hybrid III-V/Si-based waveguide system, serving as a platform for efficient light coupling between an integrated III-V quantum dot emitter to an on-chip quantum photonic integrated circuit defined on a silicon substrate. We propose a platform consisting of a hybrid InP/Si waveguide and an InP-embedded InAs quantum dot, emitting at the telecom C-band near 1550 nm. The platform can be fabricated using existing semiconductor processing technologies. Our numerical studies reveal nearly 87% of the optical field transfer efficiency between geometrically-optimized InP/Si and Si waveguides, considering propagating field along a tapered geometry. The coupling efficiency of a directional dipole emission to the hybrid InP/Si waveguide is evaluated to ∼38%, which results in more than 33% of the total on-chip optical field transfer efficiency from the dipole to the Si waveguide. We also consider the off-chip outcoupling efficiency of the propagating photon field along the Si waveguide by examining the normal to the chip plane and in-plane outcoupling configurations. In the former case, the outcoupling amounts to ∼26% when using the circular Bragg grating outcoupler design. In the latter case, the efficiency reaches up to 8%. Finally, we conclude that the conceptual device's performance is weakly susceptible to the transferred photon wavelength, offering a broadband operation within the 1.5-1.6 µm spectral range.

5.
ACS Photonics ; 9(7): 2273-2279, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35880068

RESUMEN

Whereas the Si photonic platform is highly attractive for scalable optical quantum information processing, it lacks practical solutions for efficient photon generation. Self-assembled semiconductor quantum dots (QDs) efficiently emit photons in the telecom bands (1460-1625 nm) and allow for heterogeneous integration with Si. In this work, we report on a novel, robust, and industry-compatible approach for achieving single-photon emission from InAs/InP QDs heterogeneously integrated with a Si substrate. As a proof of concept, we demonstrate a simple vertical emitting device, employing a metallic mirror beneath the QD emitter, and experimentally obtained photon extraction efficiencies of ∼10%. Nevertheless, the figures of merit of our structures are comparable with values previously only achieved for QDs emitting at shorter wavelength or by applying technically demanding fabrication processes. Our architecture and the simple fabrication procedure allows for the demonstration of high-purity single-photon generation with a second-order correlation function at zero time delay, g (2)(τ = 0) < 0.02, without any corrections at continuous wave excitation at the liquid helium temperature and preserved up to 50 K. For pulsed excitation, we achieve the as-measured g (2)(0) down to 0.205 ± 0.020 (0.114 ± 0.020 with background coincidences subtracted).

6.
Materials (Basel) ; 14(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34771794

RESUMEN

We present an experimental study on the optical quality of InAs/InP quantum dots (QDs). Investigated structures have application relevance due to emission in the 3rd telecommunication window. The nanostructures are grown by ripening-assisted molecular beam epitaxy. This leads to their unique properties, i.e., low spatial density and in-plane shape symmetry. These are advantageous for non-classical light generation for quantum technologies applications. As a measure of the internal quantum efficiency, the discrepancy between calculated and experimentally determined photon extraction efficiency is used. The investigated nanostructures exhibit close to ideal emission efficiency proving their high structural quality. The thermal stability of emission is investigated by means of microphotoluminescence. This allows to determine the maximal operation temperature of the device and reveal the main emission quenching channels. Emission quenching is predominantly caused by the transition of holes and electrons to higher QD's levels. Additionally, these carriers could further leave the confinement potential via the dense ladder of QD states. Single QD emission is observed up to temperatures of about 100 K, comparable to the best results obtained for epitaxial QDs in this spectral range. The fundamental limit for the emission rate is the excitation radiative lifetime, which spreads from below 0.5 to almost 1.9 ns (GHz operation) without any clear spectral dispersion. Furthermore, carrier dynamics is also determined using time-correlated single-photon counting.

7.
Materials (Basel) ; 14(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562831

RESUMEN

We investigated emission properties of photonic structures with InAs/InGaAlAs/InP quantum dashes grown by molecular beam epitaxy on a distributed Bragg reflector. In high-spatial-resolution photoluminescence experiment, well-resolved sharp spectral lines are observed and single-photon emission is detected in the third telecommunication window characterized by very low multiphoton events probabilities. The photoluminescence spectra measured on simple photonic structures in the form of cylindrical mesas reveal significant intensity enhancement by a factor of 4 when compared to a planar sample. These results are supported by simulations of the electromagnetic field distribution, which show emission extraction efficiencies even above 18% for optimized designs. When combined with relatively simple and undemanding fabrication approach, it makes this kind of structures competitive with the existing solutions in that spectral range and prospective in the context of efficient and practical single-photon sources for fiber-based quantum networks applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...