Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Gen Med ; 17: 2767-2779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887664

RESUMEN

Background: Parabens, which are chemicals used as preservatives in cosmetic and pharmaceutical products, have been reported to be associated with low sperm quality in animal and human models. Despite the high exposure of men to paraben-containing products in Nigeria, there are no known studies that investigate the association of parabens with sperm quality in the country. Objective: To determine the association of urinary levels of metabolites of parabens with sperm count and quality. Design/Setting: A multicenter case-control study among fertile and infertile men in five hospitals in southern Nigeria. A total of 136 men diagnosed with male infertility (cases) were compared with 154 controls with normal fertility. Urinary levels of parabens (ethyl-paraben, methylparaben, propylparaben, and butylparaben) were measured using liquid chromatography mass spectrometry, while semen analysis and hormone assays were carried out using World Health Organization standards and radioimmunoassay, respectively. Data were analyzed with non-parametric statistics and non-parametric linear regression. Results: The results showed high levels of parabens in both cases and controls. However, there was no statistically significant difference in urinary levels of ethyl-paraben, methylparaben, propylparaben, and butylparaben between cases and controls. In contrast, propylparaben had a decreasing association with total motility in both groups, but the effect was only statistically significant in the case of male infertility. The results of the regression analysis showed that a unit increase in propylparaben significantly decreased total motility in the cases (infertile men). Similarly, a unit increase in propylparaben decreased morphology significantly in the unadjusted model for infertile men. Only serum testosterone showed an insignificant correlation with urinary parabens. Conclusion: We conclude that urinary parabens are associated with features of poor sperm quality - motility, morphology, and volume. Measures to reduce exposure of men to agents containing parabens in Nigeria may reduce the prevalence of male infertility in the country.

2.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786591

RESUMEN

Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health.


Asunto(s)
Organismos Acuáticos , Suplementos Dietéticos , Moluscos , Animales , Moluscos/química , Humanos , Productos Biológicos/farmacología , Productos Biológicos/química
3.
Biofouling ; 40(3-4): 245-261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38639133

RESUMEN

Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) causes harmful disinfection by-products. In this work, 4-hydroxybenzoic acid (4-HBA) blended polyethersulfone membranes were fabricated and characterised using microscopic and spectroscopic techniques. The membranes were evaluated for the removal of bacteria and DOM from synthetic and environmental water. Permeate flux increased from 287.30 to 374.60 l m-2 h-1 at 3 bars when 4-HBA increased from 0 to 1.5 wt.%, suggesting that 4-HBA influenced the membrane's affinity for water. Furthermore, 4-HBA demonstrated antimicrobial properties by inhibiting bacterial growth. The membrane with 1 wt.% 4-HBA recorded 99.4 and 100% bacteria removal in synthetic and environmental water, respectively. Additionally, DOM removal of 55-73% was achieved. A flux recovery ratio (FRR) of 94.6% was obtained when a mixture of bacteria and humic acid was filtered, implying better fouling layer reversibility during cleaning. Furthermore, 100% FRR was achieved when a multimedia granular filtration step was installed prior to membrane filtration. The results illustrated that the membranes had a high permeate flux with low irreversible fouling. This indicated the potential of the membranes in treating complex feed streams using simple cleaning protocols.


Asunto(s)
Bacterias , Biopelículas , Incrustaciones Biológicas , Agua Dulce , Membranas Artificiales , Purificación del Agua , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Incrustaciones Biológicas/prevención & control , Purificación del Agua/métodos , Agua Dulce/microbiología , Bacterias/efectos de los fármacos , Sustancias Húmicas/análisis , Filtración/métodos , Parabenos/química , Sulfonas/química , Polímeros/química
4.
Environ Sci Pollut Res Int ; 31(20): 29460-29471, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578593

RESUMEN

This work proposes the use of multi-criteria decision analysis (MCDA) to select a more environmentally friendly analytical procedure. TOPSIS, which stands for Technique for Order of Preference by Similarity to Ideal Solution, is an example of a MCDA method that may be used to rank or select best alternative based on various criteria. Thirteen analytical procedures were used in this study as TOPSIS input choices for mifepristone determination in water samples. The input data, which consisted of these choices, was described using assessment criteria based on 12 principles of green analytical chemistry (GAC). Based on the objective mean weighting (MW), the weights for each criterion were assigned equally. The most preferred analytical method according to the ranking was solid phase extraction with micellar electrokinetic chromatography (SPE-MEKC), while solid phase extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SPE-UHPLC-MS/MS) was ranked last. TOPSIS ranking results were also compared to the green metrics NEMI, Eco-Scale, GAPI, AGREE, and AGREEprep that were used to assess the greenness of thirteen analytical methods for mifepristone determination. The results demonstrated that only the AGREE metric tool correlated with TOPSIS; however, there was no correlation with other metric tools. The analysis results suggest that TOPSIS is a very useful tool for ranking or selecting the analytical procedure in terms of its greenness and that it can be easily integrated with other green metrics tools for method greenness assessment.


Asunto(s)
Mifepristona , Contaminantes Químicos del Agua , Mifepristona/análisis , Contaminantes Químicos del Agua/análisis , Técnicas de Apoyo para la Decisión , Extracción en Fase Sólida , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
5.
Materials (Basel) ; 17(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38473639

RESUMEN

Acid mine drainage (AMD) is a major environmental problem caused by the release of acidic, toxic, and sulfate-rich water from mining sites. This study aimed to develop novel adsorbents for the removal of chromium (Cr(VI)), cadmium (Cd(II)), and lead (Pb(II)) from simulated and actual AMD using hybrid ion-exchange resins embedded with hydrous ferric oxide (HFO). Two types of resins were synthesized: anionic exchange resin (HAIX-HFO) for Cr(VI) removal and cationic exchange resin (HCIX-HFO) for Cd(II) and Pb(II) removal. The resins were characterized using scanning electron microscopy and Raman spectroscopy, which confirmed the presence of HFO particles. Batch adsorption experiments were conducted under acidic and sulfate-enhanced conditions to evaluate the adsorption capacity and kinetics of the resins. It was found that both resins exhibited high adsorption efficiencies and fast adsorption rates for their respective metal ions. To explore the potential adsorption on actual AMD, HCIX-HFO demonstrated significant removal of some metal ions. The saturated HCIX-HFO resin was regenerated using NaCl, and a high amount of the adsorbed Cd(II) and Pb(II) was recovered. This study demonstrates that HFO-embedded hybrid ion-exchange resins are promising adsorbents for treating AMD contaminated with heavy metals.

6.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535784

RESUMEN

The objective of this study was to determine the association between mycotoxins and the quality of spermatozoa in Nigeria. We designed a prospective case-control study involving 136 men diagnosed with reduced sperm count and quality in five infertility clinics in southwest Nigeria and 154 normal fertile controls. Sperm analysis was conducted in accordance with the recommendations of the World Health OrganizationWHO, while Liquid Chromatography-Mass Spectrometry was used to assay three metabolites of mycotoxins (zearalenone, ochratoxin A, and deoxyvinelol) in the urine samples of cases and controls. The data were analysed with descriptive statistics and non-parametric linear regression. The results showed no overall significant difference in levels of these metabolites between the cases and control groups. In contrast, higher levels of zearalenone and ochratoxin A significantly decreased sperm motility in the cases. Similarly, an increase in the level of ochratoxin A decreased sperm morphology in the unadjusted model in the cases. We conclude that exposure to mycotoxins reduces the quality of spermatozoa (motility and morphology) in Nigerian men but may have no effect on sperm count. Efforts to reduce the exposure of men to mycotoxins are important interventions to improve sperm quality and reduce the prevalence of male infertility in the country.


Asunto(s)
Micotoxinas , Zearalenona , Masculino , Humanos , Femenino , Estudios de Casos y Controles , Nigeria , Semen , Motilidad Espermática , Espermatozoides
7.
Environ Sci Process Impacts ; 26(3): 595-610, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38323594

RESUMEN

The presence of antimicrobials in water has grown into a major global health concern. This study thus focused on the presence, ecological implications, and potential health risks associated with nine antimicrobials: five antibiotics (ampicillin, chloramphenicol, ciprofloxacin, metronidazole, and tetracycline) and four parabens (methylparaben, ethylparaben, propylparaben, and butylparaben) in surface water and groundwater samples collected from three Southwestern States in Nigeria (Osun, Oyo, and Lagos States). These antimicrobials were widely detected across the three States with ciprofloxacin being the most dominant having maximum average concentrations of 189 µg L-1 and 319 µg L-1 in surface water and groundwater respectively. The range of average concentrations of antibiotics in surface water are 47.3-235 µg L-1 (Osun), 27.9-166 µg L-1 (Oyo) and 52.1-159 µg L-1 (Lagos). For groundwater, it is 35.3-180 µg L-1 (Osun), 26.5-181 µg L-1 (Oyo) and 32.3-319 µg L-1 (Lagos). The average concentrations of all parabens were 32.4-153 µg L-1, 53.4-80.1 µg L-1, and 83.2-132 µg L-1 for surface water and 46.7-55.7 µg L-1, 53-117 µg L-1, and 62.4-118 µg L-1 for groundwater in Osun, Oyo, and Lagos States respectively. Methylparaben was most frequently detected paraben with average concentrations of 153 µg L-1 and 117 µg L-1 in surface water and groundwater respectively. The measured environmental concentrations of these antimicrobials pose a significant ecological risk while those of ciprofloxacin and ampicillin pose a high health risk to all population groups studied. The average concentrations of antibiotics investigated in this study exceeded their threshold values for Predicted No-Effect Concentrations (PNEC) associated with resistance selection, except for tetracycline.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Parabenos/análisis , Agua , Nigeria , Medición de Riesgo , Antibacterianos/análisis , Tetraciclina , Ciprofloxacina , Ampicilina , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
8.
Fitoterapia ; 172: 105754, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992781

RESUMEN

Canthium Lam. is a genus of flowering plants of the Rubiaceae family with about 80-102 species mainly distributed in Asia, tropical and subtropical Africa. The genus is closely related to Keetia E. Phillips and Psydrax Gaertn. and plants of this genus are used in folk medicine for the treatment of diarrhea, worms, leucorrhoea, constipation, snake bites, diabetes, hypertension, venereal diseases, and malaria. The present review covers a period of 52 years of biological and chemical investigations into the genus Canthium and has resulted in the isolation of about 96 secondary metabolites and several reported biological properties. For the Rubiaceae family, iridoids were reported as being the chemotaxonomic markers of this genus (∼25%). Other reported classes of compounds include alkaloids, flavonoids, phenolic compounds, cyanogenic glycosides, coumarins, sugar alcohols, lignans, triterpenoids, and benzoquinones. The main reported pharmacological properties of most species of this genus include antioxidant, antiplasmodial, antipyretic, anti-inflammatory, antidiabetic, neuroprotective and antimicrobial activities with the latter being the most prominent. Considering the diversity of compounds reported from plants of this genus and their wide range of biological activities, it is considered to be worthy to further investigate them for the discovery of potentially new and cost effective drugs.


Asunto(s)
Fitoterapia , Rubiaceae , Etnofarmacología , Extractos Vegetales/química , Estructura Molecular , Fitoquímicos
9.
Foods ; 12(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37761073

RESUMEN

The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.

10.
Molecules ; 28(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630383

RESUMEN

In this study, functionalized mesoporous silica was prepared and characterized as a stationary phase using various analytical and solid-state techniques, including a Fourier-transform infrared (FTIR) spectrometer, thermogravimetric analysis, and nitrogen sorption. The results confirmed the successful synthesis of the hybrid stationary phase. The potential of the prepared hybrid mesoporous silica as a solid-phase extraction (SPE) stationary phase for separating and enriching polycyclic aromatic hydrocarbons (PAHs) in both spiked water samples and real water samples was evaluated. The analysis involved extracting the PAHs from the water samples using solid-phase extraction and analyzing the extracts using a two-dimensional gas chromatograph coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The synthesized sorbent exhibited outstanding performance in extracting PAHs from both spiked water samples and real water samples. In the spiked water samples, the recoveries of the PAHs ranged from 79.87% to 95.67%, with relative standard deviations (RSDs) ranging from 1.85% to 8.83%. The limits of detection (LOD) for the PAHs were in the range of 0.03 µg/L to 0.04 µg/L, while the limits of quantification (LOQ) ranged from 0.05 µg/L to 3.14 µg/L. Furthermore, all the calibration curves showed linearity, with correlation coefficients (r) above 0.98. Additionally, the results from real water samples indicated that the levels of individual PAH detected ranged from 0.57 to 12.31 µg/L with a total of 44.67 µg/L. These findings demonstrate the effectiveness of the hybrid mesoporous silica as a promising stationary phase for solid-phase extraction and sensitive detection of PAHs in water samples.

11.
Environ Monit Assess ; 195(8): 926, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420028

RESUMEN

Freshwater resources play a pivotal role in sustaining life and meeting various domestic, agricultural, economic, and industrial demands. As such, there is a significant need to monitor the water quality of these resources. Water quality index (WQI) models have gradually gained popularity since their maiden introduction in the 1960s for evaluating and classifying the water quality of aquatic ecosystems. WQIs transform complex water quality data into a single dimensionless number to enable accessible communication of the water quality status of water resource ecosystems. To screen relevant articles, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed to include or exclude articles. A total of 17 peer-reviewed articles were used in the final paper synthesis. Among the reviewed WQIs, only the Canadian Council for Ministers of the Environment (CCME) index, Irish water quality index (IEWQI) and Hahn index were used to assess both lotic and lentic ecosystems. Furthermore, the CCME index is the only exception from rigidity because it does not specify parameters to select. Except for the West-Java WQI and the IEWQI, none of the reviewed WQI performed sensitivity and uncertainty analysis to improve the acceptability and reliability of the WQI. It has been proven that all stages of WQI development have a level of uncertainty which can be determined using statistical and machine learning tools. Extreme gradient boosting (XGB) has been reported as an effective machine learning tool to deal with uncertainties during parameter selection, the establishment of parameter weights, and determining accurate classification schemes. Considering the IEWQI model architecture and its effectiveness in coastal and transitional waters, this review recommends that future research in lotic or lentic ecosystems focus on addressing the underlying uncertainty issues associated with the WQI model in addition to the use of machine learning techniques to improve the predictive accuracy and robustness and increase the domain of application.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Monitoreo del Ambiente/métodos , Ecosistema , Reproducibilidad de los Resultados , Canadá
12.
Arch Microbiol ; 205(5): 213, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129688

RESUMEN

Inhabitants of extreme and polluted environments are attractive as candidates for environmental bioremediation. Bacteria growing in oil refinery effluents, tannery dumpsite soils, car wash effluents, salt pans and hot springs were screened for microcystin-LR biodegradation potentials. Using a colorimetric BIOLOG MT2 assay; Arthrobacter sp. B105, Arthrobacter junii, Plantibacter sp. PDD-56b-14, Acinetobacter sp. DUT-2, Salinivibrio sp. YH4, Bacillus sp., Bacillus thuringiensis and Lysinibacillus boronitolerans could grow in the presence of microcystin-LR at 1, 10 and 100 µg L-1. Most bacteria grew optimally at 10 µg L-1 microcystin-LR under alkaline pH (8 and 9). The ability of these bacteria to use MC-LR as a growth substrate depicts their ability to metabolize the toxin, which is equivalent to its degradation. Through PCR screening, these bacteria were shown to lack the mlr genes implying possible use of a unique microcystin-LR degradation pathway. The study highlights the wide environmental and taxonomic distribution of microcystin-LR degraders.


Asunto(s)
Actinomycetales , Bacterias , Bacterias/genética , Bacterias/metabolismo , Toxinas Marinas , Microcistinas/metabolismo , Actinomycetales/metabolismo , Biodegradación Ambiental
13.
Chem Biol Interact ; 377: 110466, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37004951

RESUMEN

The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Distribución Tisular , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Nanopartículas/química , Preparaciones Farmacéuticas
14.
Pharmaceutics ; 14(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432732

RESUMEN

(1) Background: The increasing use of silver and platinum bimetallic nanoparticles in the diagnosis and treatment of cancer presents significant advances in biomedical applications due to their extraordinary physicochemical properties. This study investigated the role of aqueous phytochemical extract in stabilizing platinum nanodots-decorated silver nanocubes (w-Pt@AgNPs) for enhancing antioxidant activities and their mechanism. (2) Methods: UV-Vis, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM) were used to characterize the formed w-Pt@AgNPs. LC-QToF-MS/MS was used to analyze the bioactive compounds, while DPPH, ABTS, and FRAP were used to detect the scavenging potential. Flow cytometric assays were performed to investigate the cytotoxicity and the mechanism of cell death. (3) Results: Morphological studies indicated that w-Pt@AgNPs were cube in shape, decorated by platinum nanodots on the surfaces. Compared to ethanolic extract-synthesized e-Pt@AgNPs, w-Pt@AgNPs exhibited the strongest antioxidant and cytotoxic activity, as data from Annexin V and Dead cell labeling indicated higher induction of apoptosis. Despite the high proportion of early apoptotic cells, the w-Pt@AgNPs triggered a decrease in G1/G0 cell cycle phase distribution, thereby initiating a G2/M arrest. (4) Conclusions: By enhancing the antioxidant properties and promoting apoptosis, w-Pt@AgNPs exhibited remarkable potential for improved cancer therapy outcomes.

15.
Environ Pollut ; 312: 119783, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863703

RESUMEN

The aquatic environment is a hotspot for the transfer of antibiotic resistance to humans and animals. Several reviews have put together research efforts on the presence and distribution of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic chemical residue (ACRs) in food, hospital wastewater, and even in other aquatic environments. However, these reports are largely focused on data from developed countries, while data from developing countries and especially those in Africa, are only marginally discussed. This review is the first effort that distills information on the presence and distribution of ARGs and ACRs in the African aquatic environments (2012-2021). This review provides critical information on efforts put into the study of ARB, ARGs, and ACRs in aquatic environments in Africa through the lens of the different sub-regions in the continent. The picture provided is compared with those from some other continents in the world. It turns out that the large economies in Africa (South Africa, Nigeria, Tunisia, Kenya) all have a few reports of ARB and ARGs in their aquatic environment while smaller economies in the continent could barely provide reports of these in their aquatic environment (in most cases no report was found) even though they have some reports on resistomes from clinical studies. Interestingly, the frequency of these reports of ARB and ARGs in aquatic environments in Africa suggests that the continent is ahead of the South American continent but behind Europe and Asia in relation to providing information on these contaminants. Common ARGs found in African aquatic environment encode resistance to sulfonamide, tetracycline, ß-lactam, and macrolide classes of antibiotics. The efforts and studies from African scientists in eliminating ARB and ARGs from the aquatic environment in Africa are also highlighted. Overall, this document is a ready source of credible information for scientists, policy makers, governments, and regional bodies on ARB, ARGs, and ACRs in aquatic environments in Africa. Hopefully, the information provided in this review will inspire some necessary responses from all stakeholders in the water quality sector in Africa to put in more effort into providing more scientific evidence of the presence of ARB, ARGs, and ACRs in their aquatic environment and seek more efficient ways to handle them to curtail the spread of antibiotic resistance among the population in the continent. This will in turn, put the continent on the right path to meeting the United Nations Sustainable Development Goals #3 and #6, which at the moment, appears to be largely missed by most countries in the continent.


Asunto(s)
Genes Bacterianos , Aguas Residuales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antibacterianos , Bacterias/genética , Humanos , Macrólidos , Nigeria , Sulfonamidas , Tetraciclinas , Aguas Residuales/análisis , beta-Lactamas
16.
Biofouling ; 38(5): 441-454, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35686367

RESUMEN

This work investigates the enhancement of antifouling properties of ceramic nanofiltration membranes by surface modification via atomic layer deposition (ALD) of TiO2. Feed solutions containing bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA) were used as model foulants. The classic fouling mechanism models and the modified fouling indices (MFI) were deduced from the flux decline profiles. Surface roughness values of the ALD coated and uncoated membranes were 63 and 71 nm, respectively, while the contact angles were 34.2 and 59.5°, respectively. Thus, coating increased the water affinity of the membrane surfaces and consequently improved the anti-fouling properties. The MFI values and the classic fouling mechanism correlation coefficients for cake filtration for the ALD coated and the uncoated membrane upon SA fouling were 42,963 (R2 = 0.82) and 143,365 sL-2 (R2 = 0.98), respectively, whereas the correlation coefficients for the combined foulants (SA + BSA + HA) were 267,185 (R2 = 0.99) and 9569 sL-2 (R2 = 0.37), respectively. The study showed that ALD can effectively enhance the antifouling properties of ceramic membranes.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Alginatos , Biopelículas , Incrustaciones Biológicas/prevención & control , Cerámica , Sustancias Húmicas/análisis , Membranas Artificiales , Albúmina Sérica Bovina
17.
Environ Sci Pollut Res Int ; 29(55): 83452-83468, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35761140

RESUMEN

Pyrolysis GC-ToF-MS-based analytical study was employed in the identification of microplastics (MPs) in the freshwater of a dam Rietvlei (RTV) located at Gauteng Province, South Africa. These MPs extracted in five locations of the dam were found to contain five different plastic polymeric constituents including PE, PS, PA, PVC and PET along with phthalate esters and fatty acid (amides and esters) derivatives as additives. Based on the fragmented pyrolyzate products, the contribution of plastic polymers and additives was 74% and 26% respectively. Among polymers, PA was dominant with 52% followed by PVC (16%) and others (13%) such as PE, PET and PS in MPs. Scanning electron micrographs of MPs in this aquatic body displayed the rough and fibrous typed patterns. The residual mass of 8-14% was left after the thermal degradation of MPs in RTV samples in the temperature range of 500-550 °C. The results of thermogravimetry (TGA) and energy-dispersive (EDS) analyses are mutually dependent and coherent to each other by way of demonstrating the presence of various inorganic compounds in the form of additives and/or sorbates. The lessened intensities of carbonyl stretching in PA (1625 cm-1) and PET (1725 cm-1) type of MPs attributed the occurrence of degradation and weathering in this aquatic system. The possible causes to the contamination of MPs in this freshwater are the located industries and poor waste management strategies being practised in this densely populated city. Based on the industry, waste management and population perspectives, the increased contamination of MPs is very likely in this freshwater which will drastically affect the ecosystem in the near future. Based on the characterisation results, the presence of various polymers, additives and the metals in MPs is envisaged to deteriorate the aquatic life along with successive risks for the people as a consequence of bio-magnification.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/análisis , Pirólisis , Cloruro de Polivinilo , Ecosistema , Sudáfrica , Contaminantes Químicos del Agua/análisis , Agua Dulce/análisis , Cromatografía de Gases y Espectrometría de Masas , Polímeros , Ésteres/análisis , Monitoreo del Ambiente/métodos
18.
Aquat Toxicol ; 247: 106176, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487150

RESUMEN

The application of nanocomposite materials fabricated from titanium dioxide nanoparticles (TiO2 NPs) and different carbon (C) allotropes have gained popularity in water treatment applications due to their synergistic properties. Studies to date have focused on simple forms of nanomaterials (NMs), however, with the technology development, there is a dramatic increase in production and application of these complex NMs which could result in toxicological impacts on organisms when released into aquatic environments. This raises serious concerns about their safety and the need to ascertain their potential adverse effects on aquatic organisms. While conjugated TiO2 NPs/carbon-based nanohybrids (TiO2/C-NHs) may exhibit enhanced photocatalytic activity, there is no research in the scientific community regarding their toxicological effects on D. magna, which are indicators of freshwater pollution. In this study, two under-represented TiO2/C-NHs (i.e., TiO2- conjugated carbon nanofiber (CNF), and TiO2-conjugated multi-walled carbon nanotube (CNT)) were investigated for their toxic effects on D. magna, through a series of acute toxicity tests with a set of sublethal biochemical biomarkers of oxidative stress. The lethal toxicity and oxidative stress formation of TiO2/C-NHs over 48 h revealed a concentration-dependant increase in D. magna mortality. The primary mechanism identified was the generation of ROS, which was in line with toxicity results. Light microscopy and CytoViva® images visualized D. magna interaction with the NPs, which accumulated and appeared as dark materials in the lines of the gut tract. The collective results indicate that TiO2/C-NHs have the potential to cause an effect on freshwater organisms when released into the environment. However, the relevance of TiO2/C-NHs effects needs further chronic toxicity studies since they show promise to be used in nano-bioremediation materials to treat wastewaters.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Daphnia , Biomarcadores Ambientales , Agua Dulce , Nanopartículas/química , Nanopartículas/toxicidad , Titanio/química , Contaminantes Químicos del Agua/toxicidad
19.
J Environ Manage ; 311: 114822, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255324

RESUMEN

Energy and environmental challenges are global concerns that scientists are interested in alleviating. It is on this premise that we prepared boron/nitrogen graphene-coated Cu0/TiO2 (B/N-graphene-coated Cu/TiO2) photocatalyst of varying B:N ratios with dual functionality of H2 production and 2-Chlorophenol (2-CP) degradation. In-situ coating of Cu0 with B/N-graphene is achieved via solvothermal synthesis and calcination under an inert atmosphere. All B/N-graphene-coated Cu/TiO2 exhibit higher photonic efficiencies (5.68%-7.06% at 300 < λ < 400 nm) towards H2 production than bare TiO2 (0.25% at 300 < λ < 400 nm). Varying the B:N ratio in graphene influences the efficiency of H2 generation. A B:N ratio of 0.08 yields the most active composite exhibiting a photonic efficiency of 7.06% towards H2 evolution and a degradation rate of 4.07 × 10-2 min-1 towards 2-chlorophenol (2-CP). Density functional theory (DFT) investigations determine that B-doping (p-type) enhances graphene stability on Cu0 while N-doping (n-type) increases the reduction potential of Cu0 relative to H+ reduction potential. X-ray photoelectron spectroscopy reveals that increasing the B:N ratio increases p-type BC2O while decreasing n-type pyridinic-N in graphene thus altering the interlayer electron density. Isotopic labelling experiments determine water reduction as the main mechanism by which H2 is produced over B/N-graphene-coated Cu/TiO2. The reactive species involved in the degradation of 2-CP are holes (h+), hydroxyl radical (OH•), and O2•-, of which superoxide (O2•-) plays the major role. This work displays B/N -graphene-coated Cu/TiO2 as a potential photocatalyst for large-scale H2 production and 2-CP degradation.

20.
Environ Sci Eur ; 34(1): 21, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281760

RESUMEN

The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA