Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(17): 9746-9754, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602331

RESUMEN

The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.


Asunto(s)
Antinematodos , Caenorhabditis elegans , Euphorbia , Látex , Proteína Quinasa C , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Látex/química , Látex/metabolismo , Antinematodos/farmacología , Antinematodos/química , Antinematodos/metabolismo , Euphorbia/química , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Acta Pharm Sin B ; 13(11): 4638-4654, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969733

RESUMEN

Sugar-sugar glycosyltransferases play important roles in constructing complex and bioactive saponins. Here, we characterized a series of UDP-glycosyltransferases responsible for biosynthesizing the branched sugar chain of bioactive steroidal saponins from a widely known medicinal plant Paris polyphylla var. yunnanensis. Among them, a 2'-O-rhamnosyltransferase and three 6'-O-glucosyltrasferases catalyzed a cascade of glycosylation to produce steroidal diglycosides and triglycosides, respectively. These UDP-glycosyltransferases showed astonishing substrate promiscuity, resulting in the generation of a panel of 24 terpenoid glycosides including 15 previously undescribed compounds. A mutant library containing 44 variants was constructed based on the identification of critical residues by molecular docking simulations and protein model alignments, and a mutant UGT91AH1Y187A with increased catalytic efficiency was obtained. The steroidal saponins exhibited remarkable antifungal activity against four widespread strains of human pathogenic fungi attributed to ergosterol-dependent damage of fungal cell membranes, and 2'-O-rhamnosylation appeared to correlate with strong antifungal effects. The findings elucidated the biosynthetic machinery for their production of steroidal saponins and revealed their potential as new antifungal agents.

3.
J Endocrinol ; 254(3): 137-151, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35608066

RESUMEN

Receptor for activated C kinase 1 (RACK1) is a versatile protein involved in multiple biological processes. In a previous study by Zhao et al., hepatic RACK1 deletion in mice led to an inhibition of autophagy, blocked autophagy-dependent lipolysis, and caused steatosis. Using the same mouse model (RACK1hep-/-), we revealed new roles of RACK1 in maintaining bile acid homeostasis and hepatic glucose uptake, which further affected circulatory lipid and glucose levels. To be specific, even under hepatic steatosis, the plasma lipids were generally reduced in RACK1hep-/- mouse, which was due to the suppression of intestinal lipid absorption. Accordingly, a decrease in total bile acid level was found in RACK1hep-/- livers, gallbladders, and small intestine tissues, and specific decrease of 12-hydroxylated bile acids was detected by liquid chromatography-mass spectrometry. Consistently, reduced expression of CYP8B1 was found. A decrease in hepatic glycogen storage was also observed, which might be due to the inhibited glucose uptake by GLUT2 insufficiency. Interestingly, RACK1-KO-inducing hepatic steatosis did not raise insulin resistance (IR) nor IR-inducing factors like endoplasmic reticulum stress and inflammation. In summary, this study uncovers that hepatic RACK1 might be required in maintaining bile acid homeostasis and glucose uptake in hepatocytes. This study also provides an additional case of hepatic steatosis disassociation with insulin resistance.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Animales , Ácidos y Sales Biliares , Hígado Graso/metabolismo , Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina/genética , Lípidos , Hígado/metabolismo , Ratones , Ratones Noqueados , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo
4.
Org Lett ; 23(6): 2232-2237, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33667109

RESUMEN

Eurysoloids A (1) and B (2), two novel diastereomeric sesterterpenoids possessing a pentacyclic 5/6/5/10/5 framework with an unusual macrocyclic ether system, were isolated from Eurysolen gracilis Prain. Their structures were unambiguously determined by spectroscopic, single-crystal X-ray diffraction and DP4+ analyses. A plausible biosynthetic pathway for compounds 1 and 2 was proposed. Both compounds exhibited immunosuppressive activity via inhibiting the production of cytokine IFN-γ of T cells, and compound 2 inhibited adipogenesis in 3T3-L1 adipocytes.


Asunto(s)
Adipocitos/química , Adipogénesis/efectos de los fármacos , Éter/metabolismo , Lamiaceae/química , Sesterterpenos/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Éter/química , Ratones , Estructura Molecular , Sesterterpenos/química , Sesterterpenos/aislamiento & purificación
5.
Nat Prod Bioprospect ; 10(4): 269, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32548686

RESUMEN

In the original publication of this article, we found an error under the section "Introduction". The first sentence of the fourth paragraph appears incorrectly. The corrected sentence is given below. Eriocalyxin B, isolated and identified in 1982 [1], is the major component in Chinese plant Isodon eriocalyx (Dunn.) Hara (family Lamiaceae) showing many pharmacological activities, such as inhibiting inflammatory response, regulating immune cell differentiation, inhibiting tumor cells proliferation, causing cell cycle arrest affecting angiogenesis and promoting cancer cells apoptosis.

6.
Nat Prod Bioprospect ; 10(3): 163-170, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32447748

RESUMEN

Adamantane polycyclic polyprenylated acylphloroglucinols (PPAPs) with caged architecture, a special class of hybrid natural products, is specifically rich in the plant family Guttiferae, especially Hypericum or Garcinia genus. Hypersampsone P is one of Adamantane PPAPs compounds extracted from Hypericum subsessile. Here we have chosen, screened ten PPAPs and identified one of them showed an activity in inhibiting of adipocytes differentiation. Particularly, the compound, hypersampsone P, blunted the adipocyte differentiation dose-dependently. Moreover, hypersampsone P down-regulated the expressions of several key regulators for adipogenesis, including PPARγ and FABP4. The treatment of cells at the early stage of adipogenesis by hypersampsone P induced the greatest blunting of adipocyte differentiation and the effect might be involved in the LKB1-AMPK signaling pathway.

7.
Nat Prod Bioprospect ; 10(3): 131-140, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32314168

RESUMEN

Eriocalyxin B, an ent-Kaurene diterpenoid extracted from a traditional Chinese herb Isodon eriocalyx, has been shown to possess multifunctional activities such as anti-cancer and anti-inflammatory. However, the function and mechanism of the compound in adipocyte differentiation is still unknown. Here we reported that eriocalyxin B blunted adipogenesis remarkably by inhibiting the accumulation of lipid droplets, triglycerides and the expressions of adipogenesis-related factors, including C/EBPß, C/EBPα, PPARγ, and FABP4. Moreover, we showed that the inhibition might be the consequence of cell cycle being arrested at the G2/M phase during the mitotic clonal expansion of adipocyte differentiation, most likely by suppressing mRNAs and proteins of CDK1, CDK2, Cyclin A and Cyclin B1. Overall, we conclude that eriocalyxin B is capable of inhibiting adipocyte differentiation at the early stage through downregulating the proteins involved in cell cycle progression.

8.
J Agric Food Chem ; 68(17): 4865-4875, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32306731

RESUMEN

Saponins of Panax notoginseng (Burk.) F.H. Chen have been classified as a type of composition in functional foods for numerous diseases. However, its mild effects and other characteristics limited clinical applications in diseases. Inspired by "nine steaming and nine processing" of P. notoginseng in traditional Chinese medicine, we developed a "steaming"-mimic protocol, which significantly changed the composition of saponins of P. notoginseng from the original, R1, Rg1, Re, Rb1, and Rd (raw-PNS), to the products after steaming, 20S/R-Rh1, Rk3, Rh4, 20S/R-Rg3, Rk1, and Rg5 (N-PNS). Surprisingly, N-PNS demonstrated promising activities in improving hyperlipidemia and reducing body weight and weight of white adipose tissue and the inhibition of adipogenesis in obese mice. In accordance with the results in vivo, N-PNS remarkably blunted adipogenesis at the early stage of differentiation dose-dependently in vitro. Moreover, we demonstrated that the activity may involve the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway by promoting phosphorylation of AMPKT172 and downregulating its downstream factors: sterol regulatory element binding protein 1c, stearoyl-CoA desaturase 1, and fatty acid synthase. Taken together, the steaming-induced eight compositions of saponins showed a very promising function in improving hyperlipidemia and obesity both in vivo and in vitro, providing fundamental evidence for future study and application in treatment of hyperlipidemia, obesity, and other lipid-related metabolic syndromes.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Hiperlipidemias/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Panax notoginseng/química , Saponinas/administración & dosificación , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Medicamentos Herbarios Chinos/química , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Fitoterapia , Saponinas/química , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...