Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400386, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967959

RESUMEN

Amphiphilic peptides have garnered significant attention due to their highly designable and self-assembling behaviors. Self-assembled peptides hold excellent potential in various fields such as biosensing, environmental monitoring, and drug delivery, owing to their remarkable biological, physical, and chemical properties. While nanomaterials formed by peptide self-assembly have found widespread use in biomedical applications, the development of 2D peptide nanosheets based on the self-assembly of amphiphilic peptides remains challenging in terms of rational design and morphology modulation. In this study, rationally designed amphiphilic peptide molecules are self-assembled into peptide nanosheets (PNS) under specific conditions to encapsulate gold nanoparticles (AuNPs), resulting in the formation of AuNPs/PNS hybrid materials with high photothermal conversion efficiency. The findings demonstrate that 2D PNS enhances the overall photothermal therapy effect of the nanohybrid materials due to their larger hosting area for AuNPs and higher biocompatibility. The well-designed amphiphilic peptides in this study offer insights into the structural design and functional modulation of self-assembled molecules. In addition, the constructed biomimetic-functional 2D inorganic/organic nanohybrid materials hold potential applications in biomedical engineering.

2.
Biosensors (Basel) ; 14(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38785732

RESUMEN

Nitrites widely exist in human life and the natural environment, but excessive contents of nitrites will result in adverse effects on the environment and human health; hence, sensitive and stable nitrite detection systems are needed. In this study, we report the synthesis of Ti3C2 nanosheets functionalized with apoferritin (ApoF)-biomimetic platinum (Pt) nanoparticle (Pt@ApoF/Ti3C2) composite materials, which were formed by using ApoF as a template and protein-inspired biomineralization. The formed nanohybrid exhibits excellent electrochemical sensing performance towards nitrite (NaNO2). Specifically, the Pt@ApoF catalyzes the conversion of nitrites into nitrates, converting the chemical signal into an electrical signal. The prepared Pt@ApoF/Ti3C2-based electrochemical NaNO2 biosensors demonstrate a wide detection range of 0.001-9 mM with a low detection limit of 0.425 µM. Additionally, the biosensors possess high selectivity and sensitivity while maintaining a relatively stable electrochemical sensing performance within 7 days, enabling the monitoring of NaNO2 in complex environments. The successful preparation of the Pt@ApoF/Ti3C2 nanohybrid materials provides a new approach for constructing efficient electrochemical biosensors, offering a simple and rapid method for detecting NaNO2 in complex environments.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Ferritinas , Nanopartículas del Metal , Nitritos , Platino (Metal) , Platino (Metal)/química , Nitritos/análisis , Ferritinas/análisis , Nanopartículas del Metal/química , Titanio/química , Humanos , Materiales Biomiméticos/química , Límite de Detección
3.
Opt Lett ; 49(3): 530-533, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300051

RESUMEN

In this Letter, we have proposed a particle manipulation system based on a polarization-dependent dielectric metasurface (PDM), which enables far-field trapping and 2D arbitrary transporting. Based on flexible phase manipulation, by tuning the size and angle of meta-atoms, polarization-selective focusing in different modules of the metasurface can be realized. Then, when those regional focuses are continuously lighted in a relay way, the trapped particle at the focus could be delivered to the next one. When six different characteristic polarization states are tuned in order, the trapped particle could be transported to any adjacent hot spots so that 2D manipulation can be realized in an extended range. With the consideration of the Brownian motion, our simulation results show that the success rate of the particle transport can reach more than 96.0%, even after 20 periods when excited at the wavelength of 1064 nm with a power density of 0.15 mW/µm2. We believe that our research provides a new and promising method for particle manipulation and furthers on-chip optofluidic applications.

4.
Bioact Mater ; 35: 181-207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327824

RESUMEN

Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.

5.
Small ; : e2308091, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088535

RESUMEN

Biomimetic synthesis provides potential guidance for the synthesis of bio-nanomaterials by mimicking the structure, properties and functions of natural materials. Behavioral studies of biological surfaces with specific micro/nano structures are performed to explore the interactions of various molecules or organisms with biological surfaces. These explorations provide valuable inspiration for the development of biomimetic surfaces with similar effects. This work reviews some conventional preparation methods and functional modulation strategies for biomimetic interfaces. It aims to elucidate the important role of biomimetic interfaces with antifouling and low-pollution properties that can replace non-environmentally friendly coatings. Thus, biomimetic antifouling interfaces can be better applied in the field of marine antifouling and antimicrobial. In this review, the commonly used fabrication methods for biomimetic interfaces as well as some practical strategies for functional modulation is present in detail. These methods and strategies modify the physical structure and chemical properties of the biomimetic interfaces, thus improving the wettability, adsorption, drag reduction, etc. that they exhibit. In addition, practical applications are presented of various biomimetic interfaces for antifouling and look ahead to potential biomedical applications. By continuously discovering functional surfaces with biomimetic properties and studying their microstructure and macroscopic properties, more biomimetic interfaces will be developed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA