Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 974-987, 2023 Jun 02.
Article En | MEDLINE | ID: mdl-37272727

Leukaemia is the common name for a group of malignant diseases of the haematopoietic system with complex classifications and characteristics. Remarkable progress has been made in basic research and preclinical studies for acute leukaemia compared to that of the many other types/subtypes of leukaemia, especially the exploration of the biological basis and application of immunotherapy in acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). In this review, we summarize the basic approaches to immunotherapy for leukaemia and focus on the research progress made in immunotherapy development for AML and ALL. Importantly, despite the advances made to date, big challenges still exist in the effectiveness of leukaemia immunotherapy, especially in AML. Therefore, we use AML as an example and summarize the mechanisms of tumour cell immune evasion, describe recently reported data and known therapeutic targets, and discuss the obstacles in finding suitable treatment targets and the results obtained in recent clinical trials for several types of single and combination immunotherapies, such as bispecific antibodies, cell therapies (CAR-T-cell treatment), and checkpoint blockade. Finally, we summarize novel immunotherapy strategies for treating lymphocytic leukaemia and clinical trial results.


Immunotherapy , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Immunotherapy/methods , Humans , Bone Marrow Transplantation , Cancer Vaccines/administration & dosage , Tumor Escape , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
2.
Cell Biosci ; 13(1): 42, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36855057

BACKGROUND: Oligodendrocytes have robust regenerative ability and are key players in remyelination during physiological and pathophysiological states. However, the mechanisms of brain microenvironmental cue in regulation of the differentiation of oligodendrocytes still needs to be further investigated. RESULTS: We demonstrated that myelin-associated glycoprotein (MAG) was a novel receptor for angiopoietin-like protein 2 (ANGPTL2). The binding of ANGPTL2 to MAG efficiently promoted the differentiation of oligodendrocytes in vitro, as evaluated in an HCN cell line. Angptl2-null mice had a markedly impaired myelination capacity in the early stage of oligodendrocyte development. These mice had notably decreased remyelination capacities and enhanced motor disability in a cuprizone-induced demyelinating mouse model, which was similar to the Mag-null mice. The loss of remyelination ability in Angptl2-null/Mag-null mice was similar to the Angptl2-WT/Mag-null mice, which indicated that the ANGPTL2-mediated oligodendrocyte differentiation effect depended on the MAG receptor. ANGPTL2 bound MAG to enhance its phosphorylation level and recruit Fyn kinase, which increased Fyn phosphorylation levels, followed by the transactivation of myelin regulatory factor (MYRF). CONCLUSION: Our study demonstrated an unexpected cross-talk between the environmental protein (ANGPTL2) and its surface receptor (MAG) in the regulation of oligodendrocyte differentiation, which may benefit the treatment of many demyelination disorders, including multiple sclerosis.

...