Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(41): 15417-15428, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37814909

RESUMEN

Yeast flocculation and viability are critical factors in beer production. Adequate flocculation of yeast at the end of fermentation helps to reduce off-flavors and cell separation, while high viability is beneficial for yeast reuse. In this study, we used comparative genomics to analyze the genome information on Saccharomyces pastorianus W01, and its spontaneous mutant W02 with appropriate weakened flocculation ability (better off-flavor reduction performance) and unwanted decreased viability, to investigate the effect of different gene expressions on yeast flocculation or/and viability. Our results indicate that knockout of CNE1, CIN5, SIN3, HP-3, YPR170W-B, and SCEPF1_0274000100 and overexpression of CNE1 and ALD2 significantly decreased the flocculation ability of W01, while knockout of EPL1 increased the flocculation ability of W01. Meanwhile, knockout of CIN5, YPR170W-B, OST5, SFT1, SCEPF1_0274000100, and EPL1 and overexpression of SWC3, ALD2, and HP-2 decreased the viability of W01. CIN5, EPL1, SCEPF1_0274000100, ALD2, and YPR170W-B have all been shown to affect yeast flocculation ability and viability.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Floculación , Saccharomyces/genética , Saccharomyces/metabolismo , Genómica , Cerveza/análisis , Fermentación
2.
J Agric Food Chem ; 68(2): 584-590, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31623437

RESUMEN

Flavor stability is a significant concern to brewers as the staling compounds impart unpleasant flavor to beer. Thus, yeasts with antistaling ability have been engineered to produce beer with improved flavor stability. Here, we proposed that increasing the NADH availability of yeast could improve the flavor stability of beer. By engineering endogenous pathways, we obtained an array of yeast strains with a higher reducing activity. Then, we carried out beer fermentation with these strains and found that the antistaling capacities of the beer samples were improved. For a better understanding of the underlying mechanism, we compared the flavor profiles of these strains. The production of staling components was significantly decreased, whereas the content of antistaling components, such as SO2, was increased, in line with the increased antistaling ability. The other aroma components were marginally changed, indicating that this concept was useful for improving the antistaling stability without changing the flavor of beer.


Asunto(s)
Cerveza/análisis , Aromatizantes/metabolismo , NAD/metabolismo , Saccharomyces/metabolismo , Fermentación , Ingeniería Genética , Odorantes/análisis , Saccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA