Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 251(1): 2, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776759

RESUMEN

MAIN CONCLUSION: CRK28, a cysteine-rich receptor-like kinase, plays a role in root organogenesis and overall growth of plants and antagonizes abscisic acid response in seed germination and primary root growth. Receptor-like kinases (RLK) orchestrate development and adaptation to environmental changes in plants. One of the largest RLK groups comprises cysteine-rich receptor-like kinases (CRKs), for which the function of most members remains unknown. In this report, we show that the loss of function of CRK28 led to the formation of roots that are longer and more branched than the parental (Col-0) plantlets, and this correlates with an enhanced domain of the mitotic reporter CycB1:uidA in primary root meristems, whereas CRK28 overexpressing lines had the opposite phenotype, including slow root growth and reduced lateral root formation. Epidermal cell analyses revealed that crk28 mutants had reduced root hair length and increased trichome number, whereas 35S::CRK28 lines present primary roots with longer root hairs but lesser trichomes in leaves. The overall growth in soil of crk28 mutant and CRK28 overexpressing lines was reduced or enhanced, respectively, when compared to the parental (Col-0) seedlings, while germination, root growth and expression analyses of ABI3 and ABI5 further showed that CRK28 modulates ABA responses, which may be important to fine-tune plant morphogenesis. Our study unravels the participation of RLK signaling in root growth and epidermal cell differentiation.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/genética
2.
Plant Signal Behav ; 12(12): e1404218, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-29125418

RESUMEN

Plant growth and development are influenced by the interactions with other organisms including bacteria, fungi, herbivores and neighboring plants. Plant density influences the phase transitions during the entire life cycle and root architecture through a mechanism involving auxin and MEDIATOR 25 in Arabidopsis thaliana, but the nature of the signals that are perceived in response to increasing number of neighbors remains elusive. Here, we report that plant-plant perception can occur distantly, since root growth and auxin response in Arabidopsis seedlings grown at high plant density into half-divided Petri plates, decreased both primary root growth and lateral root formation in comparison with single plants grown alone, which correlates with reduced auxin response at the primary root tip. It is possible that a diffusible, yet unidentified volatile can be perceived by neighbors to synchronize physiological and developmental behavior.


Asunto(s)
Arabidopsis/fisiología , Transducción de Señal , Arabidopsis/efectos de los fármacos , Ambiente , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Reporteros , Ácidos Indolacéticos/farmacología , Modelos Biológicos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Transducción de Señal/efectos de los fármacos
3.
Plant Cell Environ ; 40(9): 1887-1899, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28556372

RESUMEN

Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Grano Comestible/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Raíces de Plantas/anatomía & histología , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Unión al ADN , Grano Comestible/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
4.
New Phytol ; 209(4): 1496-512, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26568541

RESUMEN

Plants interact with root microbes via chemical signaling, which modulates competence or symbiosis. Although several volatile organic compounds (VOCs) from fungi may affect plant growth and development, the signal transduction pathways mediating VOC sensing are not fully understood. 6-pentyl-2H-pyran-2-one (6-PP) is a major VOC biosynthesized by Trichoderma spp. which is probably involved in plant-fungus cross-kingdom signaling. Using microscopy and confocal imaging, the effects of 6-PP on root morphogenesis were found to be correlated with DR5:GFP, DR5:VENUS, H2B::GFP, PIN1::PIN1::GFP, PIN2::PIN2::GFP, PIN3::PIN3::GFP and PIN7::PIN7::GFP gene expression. A genetic screen for primary root growth resistance to 6-PP in wild-type seedlings and auxin- and ethylene-related mutants allowed identification of genes controlling root architectural responses to this metabolite. Trichoderma atroviride produced 6-PP, which promoted plant growth and regulated root architecture, inhibiting primary root growth and inducing lateral root formation. 6-PP modulated expression of PIN auxin-transport proteins in a specific and dose-dependent manner in primary roots. TIR1, AFB2 and AFB3 auxin receptors and ARF7 and ARF19 transcription factors influenced the lateral root response to 6-PP, whereas EIN2 modulated 6-PP sensing in primary roots. These results indicate that root responses to 6-PP involve components of auxin transport and signaling and the ethylene-response modulator EIN2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Morfogénesis/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Trichoderma/química , Compuestos Orgánicos Volátiles/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Biomasa , Oscuridad , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Pironas/química , Pironas/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos Orgánicos Volátiles/química
5.
J Pineal Res ; 53(3): 279-88, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22507071

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine) is a tryptophan-derived signal with important physiological roles in mammals. Although the presence of melatonin in plants may be universal, its endogenous function in plant tissues is unknown. On the basis of its structural similarity to indole-3-acetic acid, recent studies mainly focusing on root growth in several plant species have suggested a potential auxin-like activity of melatonin. However, direct evidence about the mechanisms of action of this regulator is lacking. In this work, we used Arabidopsis thaliana seedlings as a model system to evaluate the effects of melatonin on plant growth and development. Melatonin modulated root system architecture by stimulating lateral and adventitious root formation but minimally affected primary root growth or root hair development. The auxin activity of melatonin in roots was investigated using the auxin-responsive marker constructs DR5:uidA, BA3:uidA, and HS::AXR3NT-GUS. Our results show that melatonin neither activates auxin-inducible gene expression nor induces the degradation of HS::AXR3NT-GUS, indicating that root developmental changes elicited by melatonin were independent of auxin signaling. Taken together, our results suggest that melatonin is beneficial to plants by increasing root branching and that root development processes elicited by this novel plant signal are likely independent of auxin responses.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Melatonina/farmacología , Raíces de Plantas/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Raíces de Plantas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA