Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Gigascience ; 9(9)2020 09 14.
Article En | MEDLINE | ID: mdl-32930331

BACKGROUND: Genome projects and multiomics experiments generate huge volumes of data that must be stored, mined, and transformed into useful knowledge. All this information is supposed to be accessible and, if possible, browsable afterwards. Computational biologists have been dealing with this scenario for more than a decade and have been implementing software and databases to meet this challenge. The GMOD's (Generic Model Organism Database) biological relational database schema, known as Chado, is one of the few successful open source initiatives; it is widely adopted and many software packages are able to connect to it. FINDINGS: We have been developing an open source software package named Machado, a genomics data integration framework implemented in Python, to enable research groups to both store and visualize genomics data. The framework relies on the Chado database schema and, therefore, should be very intuitive for current developers to adopt it or have it running on top of already existing databases. It has several data-loading tools for genomics and transcriptomics data and also for annotation results from tools such as BLAST, InterproScan, OrthoMCL, and LSTrAP. There is an API to connect to JBrowse, and a web visualization tool is implemented using Django Views and Templates. The Haystack library integrated with the ElasticSearch engine was used to implement a Google-like search, i.e., single auto-complete search box that provides fast results and filters. CONCLUSION: Machado aims to be a modern object-relational framework that uses the latest Python libraries to produce an effective open source resource for genomics research.


Databases, Genetic , Genomics , Genome , Software
2.
Sci Rep ; 10(1): 10204, 2020 06 23.
Article En | MEDLINE | ID: mdl-32576896

Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation. To address this question in a Bos indicus population, we built the ASE profile of the skeletal muscle tissue of 190 Nelore steers, using RNA sequencing data and SNPs genotypes from the Illumina BovineHD BeadChip (770 K bp). After quality control, 820 SNPs showed at least one sample with ASE. These SNPs were widespread among all autosomal chromosomes, being 32.01% found in 3'UTR and 31.41% in coding regions. We observed a considerable variation of ASE profile among individuals, which highlighted the need for biological replicates in ASE studies. Functional analysis revealed that ASE genes play critical biological functions in the development and maintenance of muscle tissue. Additionally, some of these genes were previously reported as associated with beef production and quality traits in livestock, thus indicating a possible source of bias on genomic predictions for these traits.


Cattle/genetics , Gene Expression Regulation/genetics , Muscle, Skeletal/physiology , Alleles , Animals , Genome/genetics , Genomics/methods , Genotype , Meat , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Sequence Analysis, RNA , Transcriptome/genetics
3.
Article En | MEDLINE | ID: mdl-28852499

BACKGROUND: Beef cattle breeding programs in Brazil have placed greater emphasis on the genomic study of reproductive traits of males and females due to their economic importance. In this study, genome-wide associations were assessed for scrotal circumference at 210 d of age, scrotal circumference at 420 d of age, age at first calving, and age at second calving, in Canchim beef cattle. Data quality control was conducted resulting in 672,778 SNPs and 392 animals. RESULTS: Associated SNPs were observed for scrotal circumference at 420 d of age (435 SNPs), followed by scrotal circumference at 210 d of age (12 SNPs), age at first calving (six SNPs), and age at second calving (four SNPs). We investigated whether significant SNPs were within genic or surrounding regions. Biological processes of genes were associated with immune system, multicellular organismal process, response to stimulus, apoptotic process, cellular component organization or biogenesis, biological adhesion, and reproduction. CONCLUSIONS: Few associations were observed for scrotal circumference at 210 d of age, age at first calving, and age at second calving, reinforcing their polygenic inheritance and the complexity of understanding the genetic architecture of reproductive traits. Finding many associations for scrotal circumference at 420 d of age in various regions of the Canchim genome also reveals the difficulty of targeting specific candidate genes that could act on fertility; nonetheless, the high linkage disequilibrium between loci herein estimated could aid to overcome this issue. Therefore, all relevant information about genomic regions influencing reproductive traits may contribute to target candidate genes for further investigation of causal mutations and aid in future genomic studies in Canchim cattle to improve the breeding program.

4.
PLoS One ; 12(2): e0171660, 2017.
Article En | MEDLINE | ID: mdl-28182737

The aim of this study was to evaluate the level of introgression of breeds in the Canchim (CA: 62.5% Charolais-37.5% Zebu) and MA genetic group (MA: 65.6% Charolais-34.4% Zebu) cattle using genomic information on Charolais (CH), Nelore (NE), and Indubrasil (IB) breeds. The number of animals used was 395 (CA and MA), 763 (NE), 338 (CH), and 37 (IB). The Bovine50SNP BeadChip from Illumina panel was used to estimate the levels of introgression of breeds considering the Maximum likelihood, Bayesian, and Single Regression method. After genotype quality control, 32,308 SNPs were considered in the analysis. Furthermore, three thresholds to prune out SNPs in linkage disequilibrium higher than 0.10, 0.05, and 0.01 were considered, resulting in 15,286, 7,652, and 1,582 SNPs, respectively. For k = 2, the proportion of taurine and indicine varied from the expected proportion based on pedigree for all methods studied. For k = 3, the Regression method was able to differentiate the animals in three main clusters assigned to each purebred breed, showing more reasonable according to its biological viewpoint. Analyzing the data considering k = 2 seems to be more appropriate for Canchim-MA animals due to its biological interpretation. The usage of 32,308 SNPs in the analyses resulted in similar findings between the estimated and expected breed proportions. Using the Regression approach, a contribution of Indubrasil was observed in Canchim-MA when k = 3 was considered. Genetic parameter estimation could account for this breed composition information as a source of variation in order to improve the accuracy of genetic models. Our findings may help assemble appropriate reference populations for genomic prediction for Canchim-MA in order to improve prediction accuracy. Using the information on the level of introgression in each individual could also be useful in breeding or crossing design to improve individual heterosis in crossbred cattle.


Body Composition/genetics , Breeding , Cattle/genetics , Genetic Association Studies , Polymorphism, Single Nucleotide , Animals , Breeding/methods , Female , Hybrid Vigor/genetics , Hybridization, Genetic/genetics , Linkage Disequilibrium , Male , Quantitative Trait, Heritable , Red Meat
5.
Toxicon ; 112: 35-44, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26806211

Phospholipases A2 are major components of snake venoms (svPLA2s) and are able to induce multiple local and systemic deleterious effects upon envenomation. Several snake species are provided with svPLA2 inhibitors (sbPLIs) in their circulating blood, which confer a natural resistance against the toxic components of homologous and heterologous venoms. The sbPLIs belong to any of three structural classes named α, ß and γ. In the present study, we identified, characterized and performed structural and evolutionary analyses of sbαPLIs transcripts and the encoded proteins, in the most common Latin American pit vipers belonging to Crotalus, Bothrops and Lachesis genera. Mutation data indicated that sbαPLIs from Latin American snakes might have evolved in an accelerated manner, similarly to that reported for sbαPLIs from Asian snakes, and possibly co-evoluted with svPLA2s in response to the diversity of target enzymes. The importance of sbαPLI trimerization for the effective binding and inhibition of acidic svPLA2s is discussed and conserved cationic residues located at the central pore of the inhibitor trimer are suggested to be a significant part of the binding site of sbαPLIs to acidic svPLA2s. Our data contribute to the current body of knowledge on the structural and evolutionary characteristics of sbPLIs, in general, and may assist in the future development of selective inhibitors for secretory PLA2 from several sources.


Bothrops/metabolism , Crotalid Venoms/metabolism , Crotalus/metabolism , Models, Molecular , Phospholipase A2 Inhibitors/metabolism , Reptilian Proteins/metabolism , Viperidae/metabolism , Amino Acid Sequence , Animals , Binding Sites , Bothrops/genetics , Brazil , Consensus Sequence , Conserved Sequence , Crotalus/genetics , Liver/metabolism , Mutation , Mutation Rate , Phospholipase A2 Inhibitors/chemistry , Phospholipases A2, Secretory/antagonists & inhibitors , Phospholipases A2, Secretory/chemistry , Phospholipases A2, Secretory/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Reptilian Proteins/chemistry , Reptilian Proteins/genetics , Sequence Alignment , Viperidae/genetics
6.
BMC Genet ; 16: 99, 2015 Aug 07.
Article En | MEDLINE | ID: mdl-26250698

BACKGROUND: Genotype imputation has been used to increase genomic information, allow more animals in genome-wide analyses, and reduce genotyping costs. In Brazilian beef cattle production, many animals are resulting from crossbreeding and such an event may alter linkage disequilibrium patterns. Thus, the challenge is to obtain accurately imputed genotypes in crossbred animals. The objective of this study was to evaluate the best fitting and most accurate imputation strategy on the MA genetic group (the progeny of a Charolais sire mated with crossbred Canchim X Zebu cows) and Canchim cattle. The data set contained 400 animals (born between 1999 and 2005) genotyped with the Illumina BovineHD panel. Imputation accuracy of genotypes from the Illumina-Bovine3K (3K), Illumina-BovineLD (6K), GeneSeek-Genomic-Profiler (GGP) BeefLD (GGP9K), GGP-IndicusLD (GGP20Ki), Illumina-BovineSNP50 (50K), GGP-IndicusHD (GGP75Ki), and GGP-BeefHD (GGP80K) to Illumina-BovineHD (HD) SNP panels were investigated. Seven scenarios for reference and target populations were tested; the animals were grouped according with birth year (S1), genetic groups (S2 and S3), genetic groups and birth year (S4 and S5), gender (S6), and gender and birth year (S7). Analyses were performed using FImpute and BEAGLE software and computation run-time was recorded. Genotype imputation accuracy was measured by concordance rate (CR) and allelic R square (R(2)). RESULTS: The highest imputation accuracy scenario consisted of a reference population with males and females and a target population with young females. Among the SNP panels in the tested scenarios, from the 50K, GGP75Ki and GGP80K were the most adequate to impute to HD in Canchim cattle. FImpute reduced computation run-time to impute genotypes from 20 to 100 times when compared to BEAGLE. CONCLUSION: The genotyping panels possessing at least 50 thousands markers are suitable for genotype imputation to HD with acceptable accuracy. The FImpute algorithm demonstrated a higher efficiency of imputed markers, especially in lower density panels. These considerations may assist to increase genotypic information, reduce genotyping costs, and aid in genomic selection evaluations in crossbred animals.


Genome-Wide Association Study , Genotype , Red Meat , Alleles , Animals , Brazil , Breeding , Cattle , Crosses, Genetic , Female , Linkage Disequilibrium , Male , Phenotype , Polymorphism, Single Nucleotide
7.
Meat Sci ; 96(1): 436-40, 2014 Jan.
Article En | MEDLINE | ID: mdl-23995697

Calcium (Ca) and potassium (K) are essential nutrients in animal nutrition. Furthermore, the Ca content can influence meat tenderness because it is needed by the proteolytic system of calpains and calpastatins, major factors in postmortem tenderization of skeletal muscles. K content, which is needed for muscle contraction, can also affect meat tenderness. This study showed that K positively affects the Warner-Bratzler shear force (WBSF), measured at 14days of meat aging, which means that higher levels of K are related to lower meat tenderness. Additionally, a significant effect (P≤0.015) of a SNP in the calcium-activated neutral protease 1 (CAPN1) gene on Ca content was observed. Metal content in beef can affect not only nutritional values but also meat quality traits. Part of this effect may be related to variation in specific genes.


Calcium/analysis , Meat/analysis , Potassium/analysis , Animal Nutritional Physiological Phenomena , Animals , Biomarkers , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calpain/genetics , Calpain/metabolism , Cattle , Food Handling , Genetic Variation , Genotype , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/chemistry , Phenotype , Polymorphism, Single Nucleotide
...