Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Chem Biodivers ; 21(2): e202301263, 2024 Feb.
Article En | MEDLINE | ID: mdl-38108650

his comprehensive review is designed to evaluate the anticancer properties of ß-carbolines derived from medicinal plants, with the ultimate goal of assessing their suitability and potential in cancer treatment, management, and prevention. An exhaustive literature survey was conducted on a wide array of ß-carbolines including, but not limited to, harmaline, harmine, harmicine, harman, harmol, harmalol, pinoline, tetrahydroharmine, tryptoline, cordysinin C, cordysinin D, norharmane, and perlolyrine. Various analytical techniques were employed to identify and screen these compounds, followed by a detailed analysis of their anticancer mechanisms. Natural ß-carbolines such as harmaline and harmine have shown promising inhibitory effects on the growth of cancer cells, as evidenced by multiple in vitro and in vivo studies. Synthetically derived ß-carbolines also displayed noteworthy anticancer, neuroprotective, and cognitive-enhancing effects. The current body of research emphasizes the potential of ß-carbolines as a unique source of bioactive compounds for cancer treatment. The diverse range of ß-carbolines derived from medicinal plants can offer valuable insights into the development of new therapeutic strategies for cancer management and prevention.


Alkaloids , Plants, Medicinal , Harmine/pharmacology , Harmaline/pharmacology , Carbolines/pharmacology , Alkaloids/pharmacology
2.
Front Pharmacol ; 12: 625546, 2021.
Article En | MEDLINE | ID: mdl-34054516

Momordica species (Family Cucurbitaceae) are cultivated throughout the world for their edible fruits, leaves, shoots and seeds. Among the species of the genus Momordica, there are three selected species that are used as vegetable, and for medicinal purposes, Momordica charantia L (Bitter melon), Momordica foetida Schumach (Bitter cucumber) and Momordica balsamina L (African pumpkin). The fruits and leaves of these Momordica species are rich in primary and secondary metabolites such as proteins, fibers, minerals (calcium, iron, magnesium, zinc), ß-carotene, foliate, ascorbic acid, among others. The extracts from Momordica species are used for the treatment of a variety of diseases and ailments in traditional medicine. Momordica species extracts are reputed to possess anti-diabetic, anti-microbial, anthelmintic bioactivity, abortifacient, anti-bacterial, anti-viral, and play chemo-preventive functions. In this review we summarize the biochemical, nutritional, and medicinal values of three Momordica species (M. charantia, M. foetida and M. balsamina) as promising and innovative sources of natural bioactive compounds for future pharmaceutical usage.

3.
Heliyon ; 6(11): e05513, 2020 Nov.
Article En | MEDLINE | ID: mdl-33294667

Questions on sustainable and appropriate cropping systems for bioenergy sweet sorghum in the smallholder farming sector still exist. Therefore, a short-term experiment was carried out to study the influence of management on microbial biomass carbon (MBC), ß-glucosidase, acid phosphatase, and urease activities in a sweet sorghum cropping system in South Africa. Tillage [no-till (NT) and conventional tillage (CT)], rotation [sorghum-vetch-sorghum (S-V-S) and sorghum-fallow-sorghum (S-F-S)] and residue retention [0%, 15% and 30%] were evaluated. Tillage× rotation× residue management interaction influenced (P < 0.05) MBC whilst crop rotation residue influenced (P < 0.05) ß-glucosidase. Tillage affected ß-glucosidase (P < 0.05), acid phosphatase (P < 0.001), and urease enzyme (P < 0.01) while crop rotation only influenced acid phosphatase (P < 0.01). Residue retention affected acid phosphatase (P < 0.001) and urease enzyme (P < 0.001). NT + S-V-S+30% interaction resulted in the highest MBC content compared to CT + S-F-S+0%. NT+30% enhanced ß-glucosidase activity, S-V-S enhanced acid phosphatase compared to S-F-S. MBC and enzyme activities were positively correlated with each other. Tillage and residue management were the main factors influencing soil biological indicators under bioenergy sweet sorghum in South African marginal soils in the short-term. Soil biological indicators were higher under NT and 30% residue retention respectively. NT + S-V-S+30% was a better treatment combination to enhance soil quality under bioenergy sweet sorghum in South African marginal soils.

4.
Foods ; 9(6)2020 Jun 21.
Article En | MEDLINE | ID: mdl-32575819

In many poorer parts of the world, biofortification is a strategy that increases the concentration of target nutrients in staple food crops, mainly by genetic manipulation, to alleviate prevalent nutrient deficiencies. We reviewed the (i) prevalence of vitamin A, iron (Fe) and zinc (Zn) deficiencies; (ii) availability of vitamin A, iron and Zn biofortified crops, and their acceptability in South Africa. The incidence of vitamin A and iron deficiency among children below five years old is 43.6% and 11%, respectively, while the risk of Zn deficiency is 45.3% among children aged 1 to 9 years. Despite several strategies being implemented to address the problem, including supplementation and commercial fortification, the prevalence of micronutrient deficiencies is still high. Biofortification has resulted in the large-scale availability of ßcarotene-rich orange-fleshed sweet potatoes (OFSP), while provitamin A biofortified maize and Zn and/or iron biofortified common beans are at development stages. Agronomic biofortification is being investigated to enhance yields and concentrations of target nutrients in crops grown in agriculturally marginal environments. The consumer acceptability of OFSP and provitamin A biofortified maize were higher among children compared to adults. Accelerating the development of other biofortified staple crops to increase their availability, especially to the target population groups, is essential. Nutrition education should be integrated with community health programmes to improve the consumption of the biofortified crops, coupled with further research to develop suitable recipes/formulations for biofortified foods.

5.
Food Chem ; 257: 90-100, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29622235

Increased preference to herbal drinks has led to global interest in the use and production of different plant species for the preparation of various drink formulations. Medicinal properties derived from bioactive compounds remain the main driver of choice for herbal teas. This study determined the chemical variation in honeybush, rooibos, special and bush tea, profiled compounds responsible for such differences and compared their peak areas. Nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry were used to determine compound variation and profiling. Principal component analysis and partial-least square multivariate statistical analysis showed distinct differences (P < 0.05) between the different types of herbal teas. Detected compounds included flavonoids, phenolics, lignans, megastigmane glycoside, most of which possess health benefits. The findings showed that South African herbal teas could play a vital role as health promoting drinks, and that bush tea and special tea are phytochemically comparable with other commercialized herbal teas.


Metabolomics/methods , Teas, Herbal/analysis , Chromatography, Liquid , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry
6.
J Sci Food Agric ; 97(14): 4679-4689, 2017 Nov.
Article En | MEDLINE | ID: mdl-28585285

Tea is one of the most widely consumed non-alcoholic beverages in the world next to water. It is classified as Camellia sinensis and non-Camellia sinensis (herbal teas). The common bioactive compounds found mainly in green teas are flavan-3-ols (catechins) (also called flavanols), proanthocyanidins (tannins) and flavonols. Black tea contains theaflavins and thearubigins and white tea contains l-theanine and gamma-aminobutyric acid (GABA), while herbal teas contain diverse polyphenols. Phytochemicals in tea exhibit antimicrobial, anti-diabetic and anti-cancer activities that are perceived to be helpful in managing chronic diseases linked to lifestyle. Many of these phytochemicals are reported to be biologically active when combined. Knowledge of the synergistic interactions of tea with other teas or herbs in terms of biological activities will be of benefit for therapeutic enhancement. There is evidence that various types of teas act synergistically in exhibiting health benefits to humans, improving consumer acceptance and economic value. Similar observations have been made when teas and herbs or medicinal drugs were combined. The aim of this review is to highlight potential beneficial synergies between combinations of different types of teas, tea and herbs, and tea and medicinal drugs. © 2017 Society of Chemical Industry.


Health Promotion , Plants, Medicinal , Tea , Anti-Infective Agents , Antineoplastic Agents, Phytogenic , Antioxidants/analysis , Beverages , Biflavonoids/analysis , Camellia sinensis/chemistry , Catechin/analysis , Drug Synergism , Flavonoids/analysis , Flavonols/analysis , Glutamates/analysis , Herb-Drug Interactions , Humans , Hypoglycemic Agents , Phytochemicals/analysis , Plant Extracts/chemistry , Plants, Medicinal/adverse effects , Plants, Medicinal/chemistry , Polyphenols/analysis , Proanthocyanidins/analysis , Sensation , Tea/chemistry , gamma-Aminobutyric Acid/analysis
...