Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Elife ; 122023 11 13.
Article En | MEDLINE | ID: mdl-37956092

The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches.


Hippocampus , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Hippocampus/diagnostic imaging , Hippocampus/pathology , Temporal Lobe , Histological Techniques
2.
Med Image Anal ; 65: 101760, 2020 10.
Article En | MEDLINE | ID: mdl-32629230

Three dimensional Polarized Light Imaging (3D-PLI) is an optical technique which allows mapping the spatial fiber architecture of fibrous postmortem tissues, at sub-millimeter resolutions. Here, we propose an analytical and fast approach to compute the fiber orientation distribution (FOD) from high-resolution vector data provided by 3D-PLI. The FOD is modeled as a sum of K orientations/Diracs on the unit sphere, described on a spherical harmonics basis and analytically computed using the spherical Fourier transform. Experiments are performed on rich synthetic data which simulate the geometry of the neuronal fibers and on human brain data. Results indicate the analytical FOD is computationally efficient and very fast, and has high angular precision and angular resolution. Furthermore, investigations on the right occipital lobe illustrate that our strategy of FOD computation enables the bridging of spatial scales from microscopic 3D-PLI information to macro- or mesoscopic dimensions of diffusion Magnetic Resonance Imaging (MRI), while being a means to evaluate prospective resolution limits for diffusion MRI to reconstruct region-specific white matter tracts. These results demonstrate the interest and great potential of our analytical approach.


Image Processing, Computer-Assisted , White Matter , Algorithms , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Humans , Prospective Studies
3.
Front Neuroanat ; 12: 75, 2018.
Article En | MEDLINE | ID: mdl-30323745

3D-Polarized Light Imaging (3D-PLI) enables high-resolution three-dimensional mapping of the nerve fiber architecture in unstained histological brain sections based on the intrinsic birefringence of myelinated nerve fibers. The interpretation of the measured birefringent signals comes with conjointly measured information about the local fiber birefringence strength and the fiber orientation. In this study, we present a novel approach to disentangle both parameters from each other based on a weighted least squares routine (ROFL) applied to oblique polarimetric 3D-PLI measurements. This approach was compared to a previously described analytical method on simulated and experimental data obtained from a post mortem human brain. Analysis of the simulations revealed in case of ROFL a distinctly increased level of confidence to determine steep and flat fiber orientations with respect to the brain sectioning plane. Based on analysis of histological sections of a human brain dataset, it was demonstrated that ROFL provides a coherent characterization of cortical, subcortical, and white matter regions in terms of fiber orientation and birefringence strength, within and across sections. Oblique measurements combined with ROFL analysis opens up new ways to determine physical brain tissue properties by means of 3D-PLI microscopy.

4.
Neuroinformatics ; 16(1): 65-80, 2018 01.
Article En | MEDLINE | ID: mdl-29127664

The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.


Brain/diagnostic imaging , Brain/physiology , Gene Expression Regulation, Developmental , Imaging, Three-Dimensional/methods , Larva/genetics , Animals , Brain/anatomy & histology , Drosophila melanogaster , Larva/anatomy & histology
5.
Med Image Anal ; 18(3): 449-59, 2014 Apr.
Article En | MEDLINE | ID: mdl-24556079

We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5-34% depending on the dataset and the registration algorithm employed.


Algorithms , Lung Diseases/diagnostic imaging , Lung/diagnostic imaging , Pattern Recognition, Automated/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Tomography, X-Ray Computed/methods , Artificial Intelligence , Female , Humans , Male , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
6.
Med Image Anal ; 16(8): 1521-31, 2012 Dec.
Article En | MEDLINE | ID: mdl-22981428

A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal multi-feature model, classifies local alignments into three quality categories: correct, poor or wrong alignment. We establish a reference registration error set as basis for training and testing of the method. It consists of image registrations obtained from different non-rigid registration algorithms and manually established point correspondences of automatically determined landmarks. We employ a set of different classifiers and evaluate the performance of the proposed image features based on the classification performance of corresponding single-feature classifiers. Feature selection is conducted to find an optimal subset of image features and the resulting multi-feature model is validated against the set of single-feature classifiers. We consider the setup generic, however, its application is demonstrated on 51 CT follow-up scan pairs of the lung. On this data, the proposed method performs with an overall classification accuracy of 90%.


Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Aged , Female , Humans , Image Processing, Computer-Assisted/standards , Male , Middle Aged , Pattern Recognition, Automated , Radiography
7.
IEEE Trans Med Imaging ; 30(11): 1901-20, 2011 Nov.
Article En | MEDLINE | ID: mdl-21632295

EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intrapatient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test only on their own data, which varies widely. For this reason, reliable assessment and comparison of different registration algorithms has been virtually impossible in the past. In this work we present the results of the launch phase of EMPIRE10, which comprised the comprehensive evaluation and comparison of 20 individual algorithms from leading academic and industrial research groups. All algorithms are applied to the same set of 30 thoracic CT pairs. Algorithm settings and parameters are chosen by researchers expert in the configuration of their own method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing. This paper details the organization of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed.


Algorithms , Lung/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Software Validation , Tomography, X-Ray Computed/methods , Animals , Databases, Factual , Observer Variation , Radiographic Image Enhancement , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Sheep , Thorax
...