Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(50): 17158-17168, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33023907

RESUMEN

Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element-binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Regulación de la Expresión Génica , Glucosa/metabolismo , Hígado/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células HEK293 , Humanos , Hidroxilación , Masculino , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Transgénicos , Prolina/genética , Prolina/metabolismo
2.
PLoS One ; 14(8): e0220866, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31390378

RESUMEN

Dipeptidyl amino-peptidase 3 (DPP3) is an aminopeptidase involved in peptide degradation, including hormone peptides as angiotensin II and enkephalins. DPP3 plasma activity increases in septic patients and correlates with mortality risk. However, the exact physiological role of DPP3 remains unclear and animal studies are necessary to reveal the function of DPP3 in vivo. To this demand, we developed a two-step purification procedure for isolation of native human DPP3 from blood cell lysate (BCL) that is suitable for in vivo applications. With the use of monoclonal antibodies coupled to beads in combination with an ion-exchange chromatography, we recovered 68% of human DPP3 activity from BCL with a purity of ≥ 95%. Purified human DPP3 was assayed for activity and protein concentration using recently published DPP3-activity- and immunoassays. Additionally, protein stability and storage in relevant buffers were tested. Our results provide a promising strategy for fast and efficient isolation of human DPP3. The purified human DPP3 represents the native state of DPP3, suitable for future in vivo applications to investigate the physiological role of DPP3 and its involvement in pathophysiological conditions.


Asunto(s)
Células Sanguíneas/enzimología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/aislamiento & purificación , Anticuerpos Monoclonales , Cromatografía por Intercambio Iónico , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/inmunología , Humanos , Preservación Biológica , Estabilidad Proteica
3.
J Biol Chem ; 293(39): 15269-15276, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30126844

RESUMEN

Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis.


Asunto(s)
Resistencia a la Insulina/genética , Hígado/metabolismo , Obesidad/genética , Proteínas Plasmáticas de Unión al Retinol/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Glucemia , Dependovirus/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/genética , Hepatocitos/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Obesidad/sangre , Obesidad/patología , Vitamina A/sangre
4.
Mol Cell Biol ; 38(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29581184

RESUMEN

The transcription factor GATA2 is required for expansion and differentiation of hematopoietic stem cells (HSCs). In mesenchymal stem cells (MSCs), GATA2 blocks adipogenesis, but its biological relevance and underlying genomic events are unknown. We report a dual function of GATA2 in bone homeostasis. GATA2 in MSCs binds near genes involved in skeletal system development and colocalizes with motifs for FOX and HOX transcription factors, known regulators of skeletal development. Ectopic GATA2 blocks osteoblastogenesis by interfering with SMAD1/5/8 activation. MSC-specific deletion of GATA2 in mice increases the numbers and differentiation capacity of bone-derived precursors, resulting in elevated bone formation. Surprisingly, MSC-specific GATA2 deficiency impairs the trabecularization and mechanical strength of bone, involving reduced MSC expression of the osteoclast inhibitor osteoprotegerin and increased osteoclast numbers. Thus, GATA2 affects bone turnover via MSC-autonomous and indirect effects. By regulating bone trabecularization, GATA2 expression in the osteogenic lineage may contribute to the anatomical and cellular microenvironment of the HSC niche required for hematopoiesis.


Asunto(s)
Huesos/metabolismo , Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Células 3T3 , Animales , Sitios de Unión/genética , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Línea Celular , Microambiente Celular/genética , Fracturas Óseas/genética , Deficiencia GATA2/genética , Deficiencia GATA2/patología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Factores de Transcripción/metabolismo
5.
Nat Commun ; 8(1): 384, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855500

RESUMEN

The liver integrates multiple metabolic pathways to warrant systemic energy homeostasis. An excessive lipogenic flux due to chronic dietary stimulation contributes to the development of hepatic steatosis, dyslipidemia and hyperglycemia. Here we show that the oxidoreductase retinol saturase (RetSat) is involved in the development of fatty liver. Hepatic RetSat expression correlates with steatosis and serum triglycerides (TGs) in humans. Liver-specific depletion of RetSat in dietary obese mice lowers hepatic and circulating TGs and normalizes hyperglycemia. Mechanistically, RetSat depletion reduces the activity of carbohydrate response element binding protein (ChREBP), a cellular hexose-phosphate sensor and inducer of lipogenesis. Defects upon RetSat depletion are rescued by ectopic expression of ChREBP but not by its putative enzymatic product 13,14-dihydroretinol, suggesting that RetSat affects hepatic glucose sensing independent of retinol conversion. Thus, RetSat is a critical regulator of liver metabolism functioning upstream of ChREBP. Pharmacological inhibition of liver RetSat may represent a therapeutic approach for steatosis.Fatty liver is one of the major features of metabolic syndrome and its development is associated with deregulation of systemic lipid and glucose homeostasis. Here Heidenreich et al. show that retinol saturase is implicated in hepatic lipid metabolism by regulating the activity of the transcription factor ChREBP.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/fisiología , Animales , Glucosa/metabolismo , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Triglicéridos/sangre
6.
FASEB J ; 31(2): 732-742, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27811061

RESUMEN

The ability to adapt cellular metabolism to nutrient availability is critical for survival. The liver plays a central role in the adaptation to starvation by switching from glucose-consuming processes and lipid synthesis to providing energy substrates like glucose to the organism. Here we report a previously unrecognized role of the tumor suppressor p53 in the physiologic adaptation to food withdrawal. We found that starvation robustly increases p53 protein in mouse liver. This induction was posttranscriptional and mediated by a hepatocyte-autonomous and AMP-activated protein kinase-dependent mechanism. p53 stabilization was required for the adaptive expression of genes involved in amino acid catabolism. Indeed, acute deletion of p53 in livers of adult mice impaired hepatic glycogen storage and induced steatosis. Upon food withdrawal, p53-deleted mice became hypoglycemic and showed defects in the starvation-associated utilization of hepatic amino acids. In summary, we provide novel evidence for a p53-dependent integration of acute changes of cellular energy status and the metabolic adaptation to starvation. Because of its tumor suppressor function, p53 stabilization by starvation could have implications for both metabolic and oncological diseases of the liver.-Prokesch, A., Graef, F. A., Madl, T., Kahlhofer, J., Heidenreich, S., Schumann, A., Moyschewitz, E., Pristoynik, P., Blaschitz, A., Knauer, M., Muenzner, M., Bogner-Strauss, J. G., Dohr, G., Schulz, T. J., Schupp, M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis.


Asunto(s)
Privación de Alimentos/fisiología , Hepatocitos/fisiología , Hígado/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Animales , Células Cultivadas , Hígado Graso/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Silenciador del Gen , Glucógeno/metabolismo , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Transcriptoma , Proteína p53 Supresora de Tumor/genética
7.
Endocrinology ; 156(11): 4008-19, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26181104

RESUMEN

Reduced de novo lipogenesis in adipose tissue, often observed in obese individuals, is thought to contribute to insulin resistance. Besides trapping excess glucose and providing for triglycerides and energy storage, endogenously synthesized lipids can function as potent signaling molecules. Indeed, several specific lipids and their molecular targets that mediate insulin sensitivity have been recently identified. Here, we report that carbohydrate-response element-binding protein (ChREBP), a transcriptional inducer of glucose use and de novo lipogenesis, controls the activity of the adipogenic master regulator peroxisome proliferator-activated receptor (PPAR)γ. Expression of constitutive-active ChREBP in precursor cells activated endogenous PPARγ and promoted adipocyte differentiation. Intriguingly, ChREBP-constitutive-active ChREBP expression induced PPARγ activity in a fatty acid synthase-dependent manner and by trans-activating the PPARγ ligand-binding domain. Reducing endogenous ChREBP activity by either small interfering RNA-mediated depletion, exposure to low-glucose concentrations, or expressing a dominant-negative ChREBP impaired differentiation. In adipocytes, ChREBP regulated the expression of PPARγ target genes, in particular those involved in thermogenesis, similar to synthetic PPARγ ligands. In summary, our data suggest that ChREBP controls the generation of endogenous fatty acid species that activate PPARγ. Thus, increasing ChREBP activity in adipose tissue by therapeutic interventions may promote insulin sensitivity through PPARγ.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular , Lipogénesis , Proteínas Nucleares/metabolismo , PPAR gamma/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Línea Celular , Expresión Génica , Glucosa/metabolismo , Glucosa/farmacología , Células HEK293 , Humanos , Immunoblotting , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
8.
Horm Mol Biol Clin Investig ; 22(1): 27-37, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25941915

RESUMEN

Nearly a decade of intense research has passed since the first report linking circulating retinol binding protein 4 (RBP4) to the development of insulin resistance. By now, a variety of underlying mechanisms have been identified; some of them are adherent to the canonical role of this circulating protein, which is to transport and deliver retinol to target tissues, and others that seem rather independent of retinol transport. Despite all these efforts, a consensus in the basic principles of RBP4's metabolic effects has not been reached and some controversy remains. Using this as an opportunity, we here review and discuss current data on RBP4's action on insulin sensitivity and its dependency on retinol homeostasis. We pay special attention to the involvement of RBP4 membrane receptors that were identified during these years, such as 'stimulated by retinoic acid 6' (STRA6), and whose identification added another layer of complexity to RBP4's diverse actions. A better understanding of RBP4's functions might allow its therapeutic exploitations, urgently needed in our period that is defined by an epidemic increase in metabolic diseases such as obesity and type 2 diabetes.


Asunto(s)
Receptores de Superficie Celular/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Inflamación/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal , Vitamina A/metabolismo
9.
Mol Cell Biol ; 33(20): 4068-82, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23959802

RESUMEN

Retinoids are vitamin A (retinol) derivatives and complex regulators of adipogenesis by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Circulating retinol-binding protein 4 (RBP4) and its membrane receptor STRA6 coordinate cellular retinol uptake. It is unknown whether retinol levels and the activity of RAR and RXR in adipocyte precursors are linked via RBP4/STRA6. Here, we show that STRA6 is expressed in precursor cells and, dictated by the apo- and holo-RBP4 isoforms, mediates bidirectional retinol transport that controls RARα activity and subsequent adipocyte differentiation. Mobilization of retinoid stores in mice by inducing RBP4 secretion from the liver activated RARα signaling in the precursor cell containing the stromal-vascular fraction of adipose tissue. Retinol-loaded holo-RBP4 blocked adipocyte differentiation of cultured precursors by activating RARα. Remarkably, retinol-free apo-RBP4 triggered retinol efflux that reduced cellular retinoids, RARα activity, and target gene expression and enhanced adipogenesis synergistically with ectopic STRA6. Thus, STRA6 in adipocyte precursor cells links nuclear RARα activity to the circulating RBP4 isoforms, whose ratio in obese mice was shifted toward limiting the adipogenic potential of their precursors. This novel cross talk identifies a retinol-dependent metabolic function of RBP4 that may have important implications for the treatment of obesity.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Proteínas de la Membrana/metabolismo , Obesidad/metabolismo , Receptores de Ácido Retinoico/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vitamina A/sangre , Células 3T3-L1 , Adipocitos/citología , Adipogénesis/genética , Tejido Adiposo/citología , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Homeostasis , Hígado/citología , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Obesidad/genética , Obesidad/patología , Receptores de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Proteínas Plasmáticas de Unión al Retinol/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA