Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 100(2): 684-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25375986

RESUMEN

CONTEXT: Mutations of the CYP24A1 gene encoding the 24-hydroxylase (24OHase) that inactivates metabolites of vitamin D can cause hypercalcemia in infants and adults; in vitro assays of 24OHase activity have been difficult. OBJECTIVE: We sought an alternative assay to characterize a CYP24A1 mutation in a young adult with bilateral nephrolithiasis and hypercalcemia associated with ingestion of excess vitamin D supplements and robust dairy intake for 5 years. METHODS: CYP24A1 exons were sequenced from leukocyte DNA. Wild-type and mutant CYP24A1 cDNAs were expressed in JEG-3 cells, and 24OHase activity was assayed by a two-hybrid system. RESULTS: The CYP24A1 missense mutation L409S was found on only one allele; no other mutation was found in exons or in at least 30 bp of each intron/exon junction. Based on assays of endogenous 24OHase activity and of activity from a transiently transfected CYP24A1 cDNA expression vector, JEG-3 cells were chosen over HepG2, Y1, MA10, and NCI-H295A cells for two-hybrid assays of 24OHase activity. The apparent Michaelis constant, Km(app), was 9.0 ± 2.0 nM for CYP24A1 and 8.6 ± 2.2 nM for its mutant; the apparent maximum velocity, Vmax(app), was 0.71 ± 0.055 d(-1) for the wild type and 0.22 ± 0.026 d(-1) for the mutant. As assessed by Vmax/Km, the L409S mutant has 32% of wild-type activity (P = .0012). CONCLUSIONS: The two-hybrid system in JEG-3 cells provides a simple, sensitive, quantitative assay of 24OHase activity. Heterozygous mutation of CYP24A1 may cause hypercalcemia in the setting of excessive vitamin D intake, but it is also possible that the patient had another, unidentified CYP24A1 mutation on the other allele.


Asunto(s)
Hipercalcemia/enzimología , Nefrolitiasis/enzimología , Técnicas del Sistema de Dos Híbridos , Vitamina D3 24-Hidroxilasa/metabolismo , Humanos , Hipercalcemia/genética , Masculino , Mutación , Nefrolitiasis/genética , Vitamina D3 24-Hidroxilasa/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA