Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Phys Rev Lett ; 132(7): 075001, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38427892

Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, self-modulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma-based accelerators and represent the first characterization of hosing.

2.
Phys Rev Lett ; 129(2): 024802, 2022 Jul 08.
Article En | MEDLINE | ID: mdl-35867433

A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self-modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.

3.
Phys Rev Lett ; 126(16): 164802, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33961468

We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude [≥(4.1±0.4) MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2π) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.

4.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20190215, 2019 Aug 12.
Article En | MEDLINE | ID: mdl-31230575

This introductory article is a synopsis of the status and prospects of particle-beam-driven plasma wakefield acceleration (PWFA). Conceptual and experimental breakthroughs obtained over the last years have initiated a rapid growth of the research field, and increased maturity of underlying technology allows an increasing number of research groups to engage in experimental R&D. We briefly describe the fundamental mechanisms of PWFA, from which its chief attractions arise. Most importantly, this is the capability of extremely rapid acceleration of electrons and positrons at gradients many orders of magnitude larger than in conventional accelerators. This allows the size of accelerator units to be shrunk from the kilometre to metre scale, and possibly the quality of accelerated electron beam output to be improved by orders of magnitude. In turn, such compact and high-quality accelerators are potentially transformative for applications across natural, material and life sciences. This overview provides contextual background for the manuscripts of this issue, resulting from a Theo Murphy meeting held in the summer of 2018. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

6.
Rev Sci Instrum ; 88(2): 025110, 2017 02.
Article En | MEDLINE | ID: mdl-28249482

Using frequency mixing, a modulated light pulse of ns duration is created. We show that, with a ps-resolution streak camera that is usually used for single short pulse measurements, we can detect via an FFT detection approach up to 450 GHz modulation in a pulse in a single measurement. This work is performed in the context of the AWAKE plasma wakefield experiment where modulation frequencies in the range of 80-280 GHz are expected.

7.
Nature ; 515(7525): 92-5, 2014 Nov 06.
Article En | MEDLINE | ID: mdl-25373678

High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a compact and affordable accelerator technology.

8.
Phys Rev Lett ; 112(4): 045001, 2014 Jan 31.
Article En | MEDLINE | ID: mdl-24580460

We demonstrate experimentally that a relativistic electron bunch shaped with a sharp rising edge drives plasma wakefields with one to seven periods along the bunch as the plasma density is increased. The plasma density is varied in the 10(15)-10(17) cm(-3) range. The wakefields generation is observed after the plasma as a periodic modulation of the correlated energy spectrum of the incoming bunch. We choose a low bunch charge of 50 pC for optimum visibility of the modulation at all plasma densities. The longitudinal wakefields creating the modulation are in the MV/m range and are indirect evidence of the generation of transverse wakefields that can seed the self-modulation instability, although the instability does not grow significantly over the short plasma length (2 cm). We show that the seeding provides a phase reference for the wakefields, a necessary condition for the deterministic external injection of a witness bunch in an accelerator. This electron work supports the concept of similar experiments in the future, e.g., SMI experiments using long bunches of relativistic protons.

9.
Phys Rev Lett ; 112(2): 025001, 2014 Jan 17.
Article En | MEDLINE | ID: mdl-24484020

We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43 GV/m to a strongly loaded value of 26 GV/m.

10.
Phys Rev Lett ; 109(18): 185007, 2012 Nov 02.
Article En | MEDLINE | ID: mdl-23215291

Current filamentation instability is observed and studied in a laboratory environment with a 60 MeV electron beam and a plasma capillary discharge. Multiple filaments are observed and imaged transversely at the plasma exit with optical transition radiation. By varying the plasma density the transition between single and multiple filaments is found to be k(p)σ(r)~2.2. Scaling of the transverse filament size with the plasma skin depth is predicted in theory and observed over a range of plasma densities. Lowering the bunch charge, and thus the bunch density, suppresses the instability.

11.
Phys Rev Lett ; 109(16): 164802, 2012 Oct 19.
Article En | MEDLINE | ID: mdl-23215085

We describe the first direct observation of the significant suppression of the energy spread induced by coherent synchrotron radiation by a pair of conductive plates placed inside a dipole magnet. In addition to various feedback loops improving the energy stability of the beam parameters, our key innovation for this experiment is the observation of the time-resolved energy variation within the electron bunch, instead of the traditionally measured rms energy spread. We present the results of the experiments and compare them with a rigorous analytical theory.

12.
Phys Rev Lett ; 108(24): 244801, 2012 Jun 15.
Article En | MEDLINE | ID: mdl-23004279

We report first evidence of wakefield acceleration of a relativistic electron beam in a dielectric-lined slab-symmetric structure. The high energy tail of a ∼60 MeV electron beam was accelerated by ∼150 keV in a 2 cm-long, slab-symmetric SiO2 waveguide, with the acceleration or deceleration clearly visible due to the use of a beam with a bifurcated longitudinal distribution that serves to approximate a driver-witness beam pair. This split-bunch distribution is verified by longitudinal reconstruction analysis of the emitted coherent transition radiation. The dielectric waveguide structure is further characterized by spectral analysis of the emitted coherent Cherenkov radiation at THz frequencies, from a single electron bunch, and from a relativistic bunch train with spacing selectively tuned to the second longitudinal mode (TM02). Start-to-end simulation results reproduce aspects of the electron beam bifurcation dynamics, emitted THz radiation properties, and the observation of acceleration in the dielectric-lined, slab-symmetric waveguide.

13.
Phys Rev Lett ; 107(14): 145003, 2011 Sep 30.
Article En | MEDLINE | ID: mdl-22107203

It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

14.
Phys Rev Lett ; 104(15): 155001, 2010 Apr 16.
Article En | MEDLINE | ID: mdl-20481996

The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.

15.
Phys Rev Lett ; 101(12): 124801, 2008 Sep 19.
Article En | MEDLINE | ID: mdl-18851378

A novel approach for generating and accelerating positron bunches in a plasma wake is proposed and modeled. The system consists of a plasma with an embedded thin foil into which two electron beams are shot. The first beam creates a region for accelerating and focusing positrons and the second beam provides positrons to be accelerated. Monte Carlo and 3D PIC simulations show a large number of positrons (10(7) approximately 10(8)) are trapped and accelerated to approximately 5 GeV over 1 m with relatively narrow energy spread and low emittance.

16.
Phys Rev Lett ; 101(5): 054801, 2008 Aug 01.
Article En | MEDLINE | ID: mdl-18764397

We demonstrate that trains of subpicosecond electron microbunches, with subpicosecond spacing, can be produced by placing a mask in a region of the beam line where the beam transverse size is dominated by the correlated energy spread. We show that the number, length, and spacing of the microbunches can be controlled through the parameters of the beam and the mask. Such microbunch trains can be further compressed and accelerated and have applications to free electron lasers and plasma wakefield accelerators.

17.
Phys Rev Lett ; 101(5): 055001, 2008 Aug 01.
Article En | MEDLINE | ID: mdl-18764398

An ultrarelativistic 28.5 GeV, 700-microm-long positron bunch is focused near the entrance of a 1.4-m-long plasma with a density n(e) between approximately equal to 10(13) and approximately equal to 5 x 10(14) cm(-3). Partial neutralization of the bunch space charge by the mobile plasma electrons results in a reduction in transverse size by a factor of approximately equal to 3 in the high emittance plane of the beam approximately equal to 1 m downstream from the plasma exit. As n(e) increases, the formation of a beam halo containing approximately 40% of the total charge is observed, indicating that the plasma focusing force is nonlinear. Numerical simulations confirm these observations. The bunch with an incoming transverse size ratio of approximately 3 and emittance ratio of approximately 5 suffers emittance growth and exits the plasma with approximately equal sizes and emittances.

18.
Phys Rev Lett ; 100(21): 214801, 2008 May 30.
Article En | MEDLINE | ID: mdl-18518609

First measurements of the breakdown threshold in a dielectric subjected to GV/m wakefields produced by short (30-330 fs), 28.5 GeV electron bunches have been made. Fused silica tubes of 100 microm inner diameter were exposed to a range of bunch lengths, allowing surface dielectric fields up to 27 GV/m to be generated. The onset of breakdown, detected through light emission from the tube ends, is observed to occur when the peak electric field at the dielectric surface reaches 13.8+/-0.7 GV/m. The correlation of structure damage to beam-induced breakdown is established using an array of postexposure inspection techniques.

19.
Phys Rev Lett ; 98(8): 084801, 2007 Feb 23.
Article En | MEDLINE | ID: mdl-17359103

The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

20.
Phys Rev Lett ; 99(25): 255001, 2007 Dec 21.
Article En | MEDLINE | ID: mdl-18233526

The electron hosing instability in the blow-out regime of plasma-wakefield acceleration is investigated using a linear perturbation theory about the electron blow-out trajectory in Lu et al. [in Phys. Rev. Lett. 96, 165002 (2006)10.1103/PhysRevLett.96.165002]. The growth of the instability is found to be affected by the beam parameters unlike in the standard theory Whittum et al. [Phys. Rev. Lett. 67, 991 (1991)10.1103/PhysRevLett.67.991] which is strictly valid for preformed channels. Particle-in-cell simulations agree with this new theory, which predicts less hosing growth than found by the hosing theory of Whittum et al.

...