Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
bioRxiv ; 2023 Dec 09.
Article En | MEDLINE | ID: mdl-37987003

Adolescent-onset schizophrenia (AOS) is a relatively rare and under-studied form of schizophrenia with more severe cognitive impairments and poorer outcome compared to adult-onset schizophrenia. Several neuroimaging studies have reported alterations in regional activations that account for activity in individual regions (first-order model) and functional connectivity that reveals pairwise co-activations (second-order model) in AOS compared to controls. The pairwise maximum entropy model, also called the Ising model, can integrate both first-order and second-order terms to elucidate a comprehensive picture of neural dynamics and captures both individual and pairwise activity measures into a single quantity known as energy, which is inversely related to the probability of state occurrence. We applied the MEM framework to task functional MRI data collected on 23 AOS individuals in comparison with 53 healthy control subjects while performing the Penn Conditional Exclusion Test (PCET), which measures executive function that has been repeatedly shown to be more impaired in AOS compared to adult-onset schizophrenia. Accuracy of PCET performance was significantly reduced among AOS compared to controls as expected. Average cumulative energy achieved for a participant over the course of the fMRI negatively correlated with task performance, and the association was stronger than any first-order associations. The AOS subjects spent more time in higher energy states that represent lower probability of occurrence and were associated with impaired executive function suggesting that the neural dynamics may be less efficient compared to controls who spent more time in lower energy states occurring with higher probability and hence are more stable and efficient. The energy landscapes in both conditions featured attractors that corresponded to two distinct subnetworks, namely fronto-temporal and parieto-motor. Attractor basins were larger in the controls than in AOS; moreover, fronto-temporal basin size was significantly correlated with cognitive performance in controls but not among the AOS. The single trial trajectories for the AOS group also showed higher variability in concordance with shallow attractor basins among AOS. These findings suggest that the neural dynamics of AOS features more frequent occurrence of less probable states with narrower attractors, which lack the relation to executive function associated with attractors in control subjects suggesting a diminished capacity of AOS to generate task-effective brain states.

2.
Sci Rep ; 13(1): 7751, 2023 05 12.
Article En | MEDLINE | ID: mdl-37173346

Structural covariance network (SCN) studies on first-episode antipsychotic-naïve psychosis (FEAP) have examined less granular parcellations on one morphometric feature reporting lower network resilience among other findings. We examined SCNs of volume, cortical thickness, and surface area using the Human Connectome Project atlas-based parcellation (n = 358 regions) from 79 FEAP and 68 controls to comprehensively characterize the networks using a descriptive and perturbational network neuroscience approach. Using graph theoretical methods, we examined network integration, segregation, centrality, community structure, and hub distribution across the small-worldness threshold range and correlated them with psychopathology severity. We used simulated nodal "attacks" (removal of nodes and all their edges) to investigate network resilience, calculated DeltaCon similarity scores, and contrasted the removed nodes to characterize the impact of simulated attacks. Compared to controls, FEAP SCN showed higher betweenness centrality (BC) and lower degree in all three morphometric features and disintegrated with fewer attacks with no change in global efficiency. SCNs showed higher similarity score at the first point of disintegration with ≈ 54% top-ranked BC nodes attacked. FEAP communities consisted of fewer prefrontal, auditory and visual regions. Lower BC, and higher clustering and degree, were associated with greater positive and negative symptom severity. Negative symptoms required twice the changes in these metrics. Globally sparse but locally dense network with more nodes of higher centrality in FEAP could result in higher communication cost compared to controls. FEAP network disintegration with fewer attacks suggests lower resilience without impacting efficiency. Greater network disarray underlying negative symptom severity possibly explains the therapeutic challenge.


Antipsychotic Agents , Connectome , Psychotic Disorders , Humans , Magnetic Resonance Imaging/methods , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Connectome/methods , Axilla , Brain/pathology
3.
Schizophr Res ; 256: 88-97, 2023 06.
Article En | MEDLINE | ID: mdl-37196534

Hippocampal abnormalities are associated with psychosis-risk states. Given the complexity of hippocampal anatomy, we conducted a multipronged examination of morphometry of regions connected with hippocampus, and structural covariance network (SCN) and diffusion-weighted circuitry among 27 familial high-risk (FHR) individuals who were past the highest risk for conversion to psychoses and 41 healthy controls using ultrahigh-field high-resolution 7 Tesla (7T) structural and diffusion MRI data. We obtained fractional anisotropy and diffusion streams of white matter connections and examined correspondence of diffusion streams with SCN edges. Nearly 89 % of the FHR group had an axis-I disorder including 5 with schizophrenia. Therefore, we compared the entire FHR group regardless of the diagnosis (All_FHR = 27) and FHR-without-schizophrenia (n = 22) with 41 controls in this integrative multimodal analysis. We found striking volume loss in bilateral hippocampus, particularly the head, bilateral thalamus, caudate, and prefrontal regions. All_FHR and FHR-without-SZ SCNs showed significantly lower assortativity and transitivity but higher diameter compared to controls, but FHR-without-SZ SCN differed on every graph metric compared to All_FHR suggesting disarrayed network with no hippocampal hubs. Fractional anisotropy and diffusion streams were lower in FHR suggesting white matter network impairment. White matter edges showed significantly higher correspondence with SCN edges in FHR compared to controls. These differences correlated with psychopathology and cognitive measures. Our data suggest that hippocampus may be a "neural hub" contributing to psychosis risk. Higher correspondence of white matter tracts with SCN edges suggest that shared volume loss may be more coordinated among regions within the hippocampal white matter circuitry.


Psychotic Disorders , Schizophrenia , White Matter , Humans , Psychotic Disorders/complications , Magnetic Resonance Imaging , Schizophrenia/complications , Diffusion Magnetic Resonance Imaging , Hippocampus/diagnostic imaging , Hippocampus/pathology , White Matter/diagnostic imaging , White Matter/pathology
4.
Schizophr Res ; 240: 1-21, 2022 02.
Article En | MEDLINE | ID: mdl-34906884

BACKGROUND: Schizophrenia is proposed as a disorder of dysconnectivity. However, examination of complexities of dysconnectivity has been challenging. Structural covariance networks (SCN) provide important insights into the nature of dysconnectivity. This systematic review examines the SCN studies that employed statistical approaches to elucidate covariation of regional morphometric variations. METHODS: A systematic search of literature was conducted for peer-reviewed publications using different keywords and keyword combinations for schizophrenia. Fifty-two studies met the criteria. RESULTS: Early SCN studies began using correlational structure of selected regions. Over the last 3 decades, methodological approaches have grown increasingly sophisticated from examining selected brain regions using correlation tests on small sample sizes to recent approaches that use advanced statistical methods to examine covariance structure of whole-brain parcellations on larger samples. Although the results are not fully consistent across all studies, a pattern of fronto-temporal, fronto-parietal and fronto-thalamic covariation is reported. Attempts to associate SCN alterations with functional connectivity, to differentiate between disease-related and neurodevelopment-related morphometric changes, and to develop "causality-based" models are being reported. Clinical correlation with outcome, psychotic symptoms, neurocognitive and social cognitive performance are also reported. CONCLUSIONS: Application of advanced statistical methods are beginning to provide insights into interesting patterns of regional covariance including correlations with clinical and cognitive data. Although these findings appear similar to morphometric studies, SCNs have the advantage of highlighting topology of these regions and their relationship to the disease and associated variables. Further studies are needed to investigate neurobiological underpinnings of shared covariance, and causal links to clinical domains.


Psychotic Disorders , Schizophrenia , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging
5.
Schizophr Res ; 239: 176-191, 2022 01.
Article En | MEDLINE | ID: mdl-34902650

BACKGROUND: Examination of structural covariance network (SCN) is gaining prominence among the strategies to delineate dysconnectivity that case-control morphometric comparisons cannot address. Part II of this review extends on the part I of the review that included SCN studies using statistical approaches by examining SCN studies applying graph theoretic approaches to elucidate network properties in schizophrenia. This review also includes SCN studies using graph theoretic or statistical approaches on persons at-risk for schizophrenia. METHODS: A systematic literature search was conducted for peer-reviewed publications using different keywords and keyword combinations for schizophrenia and risk for schizophrenia. Thirteen studies on schizophrenia and five on persons at risk for schizophrenia met the criteria. RESULTS: A variety of findings from over the last 1½ decades showing qualitative and quantitative differences in the global and local structural connectome in schizophrenia are described. These observations include altered hub patterns, disrupted network topology and hierarchical organization of the brain, and impaired connections that may be localized to default mode, executive control, and dorsal attention networks. Some of these connectomic alterations were observed in persons at-risk for schizophrenia before the onset of the illness. CONCLUSIONS: Observed disruptions may reduce network efficiency and capacity to integrate information. Further, global connectomic changes were not schizophrenia-specific but local network changes were. Existing studies have used different atlases for brain parcellation, examined different morphometric features, and patients at different stages of illness making it difficult to conduct meta-analysis. Future studies should harmonize such methodological differences to facilitate meta-analysis and also elucidate causal underpinnings of dysconnectivity.


Connectome , Schizophrenia , Brain/diagnostic imaging , Case-Control Studies , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging
6.
J Control Release ; 156(2): 161-9, 2011 Dec 10.
Article En | MEDLINE | ID: mdl-21864598

Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.


Cyclohexanes/administration & dosage , HIV Fusion Inhibitors/administration & dosage , HIV Infections/drug therapy , Silicone Elastomers/chemistry , Triazoles/administration & dosage , Vagina/metabolism , Vaginal Creams, Foams, and Jellies/chemistry , Administration, Intravaginal , Animals , Cyclohexanes/pharmacokinetics , Delayed-Action Preparations/chemistry , Female , Gels/chemistry , HIV Fusion Inhibitors/pharmacokinetics , HIV-1/drug effects , Humans , Macaca mulatta , Maraviroc , Triazoles/pharmacokinetics , Vagina/drug effects
7.
J Pharm Sci ; 99(4): 1838-54, 2010 Apr.
Article En | MEDLINE | ID: mdl-19904825

This study reports the formulation/characterisation of novel polymeric platforms designed to behave as low-viscosity systems in the nonaqueous state, however, following uptake of aqueous fluids, exhibit rheological structuring and mucoadhesion. The rheological/mechanical and mucoadhesive properties of platforms containing poly(acrylic acid) (PAA, 1%, 3%, 5%, w/w) and poloxamines (Tetronic 904, 901, 704, 701, 304), both in the absence and presence of phosphate buffered saline (PBS, pH 7.4) are described. With the exception of Tetronic 904, all formulations exhibited Newtonian flow in the nonaqueous state, whereas, all aqueous formulations displayed pseudoplastic flow. The consistency and viscoelastic properties were dependent on the concentrations of PAA and PBS and Tetronic grade. PBS significantly increased the consistency, viscoelasticity and mucoadhesion, reaching a maximum at a defined concentration of PBS that was dependent on PAA concentration and Tetronic grade. Formulations containing Tetronic 904 exhibited greatest consistency and elasticity both prior to and after dilution with PBS. Increasing PAA concentration enhanced the mucoadhesive properties. Prolonged drug release of metronidazole was observed from formulations containing 10% (w/w) PBS, 3% and, particularly, 5% (w/w) PAA. It is suggested that the physicochemical properties of formulations containing 3% or 5% (w/w) PAA and Tetronic 904, would render them suitable platforms for administration to body cavities.


Acrylic Resins/chemistry , Ethylenediamines/chemistry , Polyethylene Glycols/chemistry , Prostheses and Implants , Adhesiveness , Anti-Infective Agents/administration & dosage , Delayed-Action Preparations/chemistry , Elasticity , Metronidazole/administration & dosage , Rheology , Viscoelastic Substances/chemistry , Viscosity
8.
Biomacromolecules ; 9(2): 624-33, 2008 Feb.
Article En | MEDLINE | ID: mdl-18220350

This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity.


Acrylic Resins/chemistry , Anti-Infective Agents/chemistry , Mouth Mucosa/drug effects , Acrylic Resins/administration & dosage , Administration, Buccal , Animals , Anti-Infective Agents/administration & dosage , Chemical Phenomena , Chemistry, Pharmaceutical , Chemistry, Physical , Drug Implants , Gels , Mouth Mucosa/microbiology , Swine
9.
J Pharm Sci ; 96(10): 2632-46, 2007 Oct.
Article En | MEDLINE | ID: mdl-17702045

This study examined the rheological/mucoadhesive properties of poly(acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G'') moduli of organogels as a function of frequency was minimal, G'' was greater than G'' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.


Acrylic Resins/chemistry , Drug Carriers , Gels , Mouth/metabolism , Mucins/chemistry , Pharmaceutical Preparations/administration & dosage , Rheology , Technology, Pharmaceutical/methods , Acrylic Resins/metabolism , Adhesiveness , Administration, Oral , Chemistry, Pharmaceutical , Drug Compounding , Elasticity , Ethylene Glycol/chemistry , Glycerol/chemistry , Models, Chemical , Mucins/metabolism , Oscillometry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Polyethylene Glycols/chemistry , Propylene Glycol/chemistry , Solvents/chemistry , Stress, Mechanical , Viscosity
...