Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Immunol ; 15: 1432816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206202

RESUMEN

The use of flow cytometry in mice is constrained by several factors, including the limited availability of mouse-specific antibodies and the need to work with small volumes of peripheral blood. This is particularly challenging for longitudinal studies, as serial blood samples should not exceed 10% of the total blood volume in mice. To address this, we have developed two novel flow cytometry panels designed to extensively analyze immune cell populations in mice during longitudinal studies, using only 50 µL of peripheral blood per panel. Additionally, a third panel has been designed to conduct a more detailed analysis of cytotoxic and inhibitory markers at the end point. These panels have been validated on a lipopolysaccharide (LPS)-induced lung inflammation model. Two experiments were conducted to 1) validate the panels' sensitivity to immune challenges (n=12) and 2) to assess intrinsic variability of measurements (n=5). In both experiments, we collected 50 µL of peripheral blood for each cytometry panel from the maxillary venous sinus. All antibodies were titrated to identify the optimal concentration that maximized the signal from the positive population while minimizing the signal from the negative population. Samples were processed within 1 hour of collection using a MACSQuant Analyzer 16 cytometer. Our results demonstrate that these immunological panels are sensitive enough to detect changes in peripheral blood after LPS induction. Moreover, our findings help determine the sample size needed based on the immune population variability. In conclusion, the panels we have designed enable a comprehensive analysis of the murine immune system with a low blood volume requirement, enabling the measure of both absolute values and relative percentages effectively. This approach provides a robust platform for longitudinal studies in mice and can be used to uncover significant insights into immune responses.


Asunto(s)
Citometría de Flujo , Lipopolisacáridos , Animales , Citometría de Flujo/métodos , Ratones , Lipopolisacáridos/inmunología , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Inmunofenotipificación/métodos , Femenino , Modelos Animales de Enfermedad , Neumonía/inmunología , Neumonía/sangre
2.
Cancers (Basel) ; 16(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39199666

RESUMEN

The combination of immunoPET-where an antibody (Ab) is labeled with an isotope for PET imaging-and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection for subsequent radioimmunotherapy. It also facilitates the assessment of tumor response to therapy, allowing for treatment adjustments if necessary. In addition, immunoPET provides critical pharmacokinetic data, including antibody biodistribution and clearance rates, which are essential for dosimetry calculations and treatment protocol optimization. There are still challenges to overcome. Identifying appropriate target antigens that are selectively expressed on cancer cells while minimally expressed on normal tissues remains a major hurdle to reduce off-target toxicity. In addition, it is critical to optimize the pharmacokinetics of radiolabeled antibodies to maximize tumor uptake and minimize normal tissue uptake, particularly in vital organs such as the liver and kidney. This approach offers the potential for targeted and personalized cancer therapy with reduced systemic toxicity by exploiting the specificity of monoclonal antibodies and the cytotoxic effects of radiation. However, further research is needed to address remaining challenges and to optimize these technologies for clinical use.

3.
Biomed Pharmacother ; 179: 117326, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208671

RESUMEN

Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats. Twenty OVX rats were orally supplemented with either MIS (OVX-MIS) or vehicle (OVX). Ten OVX rats received vehicle orally along with subcutaneous injections of 17ß-oestradiol (OVX-E2), whereas 10 rats underwent a sham operation and received oral and injected vehicles (control group). MIS consumption partly counteracted the fat mass accretion observed in OVX animals, leading to decreased total fat mass, adiposity index and retroperitoneal white adipose tissue (RWAT) adipocyte hypertrophy. OVX-MIS rats also displayed increased lean mass and lean/fat ratio, suggesting a healthier body composition, similar to the results reported for OVX-E2 animals. MIS consumption decreased the circulating levels of the proinflammatory marker CRP, the total cholesterol-to-HDL-cholesterol ratio and the leptin-to-adiponectin ratio, a biomarker of diabetes risk and metabolic syndrome. RWAT transcriptomics indicated that MIS favourably regulated genes involved in adipocyte structure and morphology, cell fate determination and differentiation, glucose/insulin homeostasis, inflammation, response to stress and oxidative phosphorylation, which may be mechanisms underlying the beneficial effects described for OVX-MIS rats. Our results pave the way for using this MIS formulation to improve the body composition and immunometabolic health of menopausal women.


Asunto(s)
Tejido Adiposo , Adiposidad , Carnosina , Cisteína , Histidina , Ovariectomía , Serina , Animales , Femenino , Adiposidad/efectos de los fármacos , Carnosina/farmacología , Histidina/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Ratas , Cisteína/farmacología , Serina/farmacología , Serina/metabolismo , Ratas Wistar , Suplementos Dietéticos
4.
Nucl Med Biol ; 136-137: 108930, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38833768

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective diagnostic and therapeutic options. Membrane type 1 matrix metalloproteinase (MT1-MMP) is an attractive biomarker for improving patient selection. This study aimed to develop a theranostic tool using a highly tumour-selective anti-MT1-MMP antibody (LEM2/15) radiolabelled with 89Zr for PET and 177Lu for therapy in a TNBC murine model. METHODS: The LEM2/15 antibody and IgG isotype control were radiolabelled with 89Zr. PET imaging was performed in a TNBC orthotopic mouse model at 1, 2, 4, and 7 days after administration. Tissue biodistribution and pharmacokinetic parameters were analysed and Patlak linearisation was used to calculate the influx rate of irreversible uptake. The TNBC mice were treated with [177Lu]Lu-DOTA-LEM2/15 (single- or 3-dose regimen) or saline. Efficacy of [177Lu]Lu-DOTA-LEM2/15 was evaluated as tumour growth and DNA damage (γH2AX) in MDA 231-BrM2-831 tumours. RESULTS: At 7 days post-injection, PET uptake in tumour xenografts revealed a 1.6-fold and 2.4-fold higher tumour-to-blood ratio for [89Zr]Zr-Df-LEM2/15 in the non-blocked group compared to the blocked and IgG isotype control groups, respectively. Specific uptake of LEM2/15 in TBNC tumours mediated by MT1-MMP-binding was demonstrated by the Patlak linearisation method, providing insights into the potential efficacy of LEM2/15-based treatments. A similar uptake was found for [89Zr]Zr-Df-LEM2/15 and [177Lu]Lu-DOTA-LEM2/15 in tumours 7 days post-injection (6.80 ± 1.31 vs. 5.61 ± 0.66 %ID/g). Tumour doubling time was longer in the [177Lu]Lu-DOTA-LEM2/15 3-dose regimen treated group compared to the control (50 vs. 17 days, respectively). The percentage of cells with γH2AX-foci was higher in tumours treated with [177Lu]Lu-DOTA-LEM2/15 3-dose regimen compared to tumours non-treated or treated with [177Lu]Lu-DOTA-LEM2/15 single-dose (12 % vs. 4-5 %). CONCLUSIONS: The results showed that the 89Zr/177Lu-labelled anti-MT1-MMP mAb (LEM2/15) pair facilitated immune-PET imaging and reduced tumour growth in a preclinical TNBC xenograft model.

5.
Food Funct ; 15(9): 4905-4924, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38598180

RESUMEN

In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17ß-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.


Asunto(s)
Adiposidad , Curcumina , Suplementos Dietéticos , Hesperidina , Ovariectomía , Fitosteroles , Animales , Femenino , Hesperidina/farmacología , Hesperidina/administración & dosificación , Fitosteroles/farmacología , Fitosteroles/administración & dosificación , Ratas , Curcumina/farmacología , Curcumina/administración & dosificación , Adiposidad/efectos de los fármacos , Leptina/sangre , Ratas Sprague-Dawley , Humanos , Ratas Wistar
6.
Breast Cancer Res ; 25(1): 91, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542268

RESUMEN

A hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis). However, differentiation therapy is still in its early stages and the intrinsic complexity of solid tumor heterogeneity demands innovative approaches in order to be efficiently translated into the clinic. We demonstrate here that microRNA 203, a potent driver of differentiation in pluripotent stem cells (ESCs and iPSCs), promotes the differentiation of mammary gland tumor cells. Combining mouse in vivo approaches and both mouse and human-derived tridimensional organoid cultures, we report that miR-203 influences the self-renewal capacity, plasticity and differentiation potential of breast cancer cells and prevents tumor cell growth in vivo. Our work sheds light on differentiation-based antitumor therapies and offers miR-203 as a promising tool for directly confronting the tumor-maintaining and regeneration capability of cancer cells.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Ratones , Animales , Femenino , MicroARNs/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Recurrencia Local de Neoplasia/patología , Diferenciación Celular/genética , Proliferación Celular/genética , Células Madre Neoplásicas/patología
8.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928090

RESUMEN

KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Mutación , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
9.
Front Med (Lausanne) ; 9: 1058455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507540

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by aggressiveness and high rates of metastasis. The identification of relevant biomarkers is crucial to improve outcomes for TNBC patients. Membrane type 1-matrix metalloproteinase (MT1-MMP) could be a good candidate because its expression has been reported to correlate with tumor malignancy, progression and metastasis. Moreover, single-domain variable regions (VHHs or Nanobodies) derived from camelid heavy-chain-only antibodies have demonstrated improvements in tissue penetration and blood clearance, important characteristics for cancer imaging. Here, we have developed a nanobody-based PET imaging strategy for TNBC detection that targets MT1-MMP. A llama-derived library was screened against the catalytic domain of MT1-MMP and a panel of specific nanobodies were identified. After a deep characterization, two nanobodies were selected to be labeled with gallium-68 (68Ga). ImmunoPET imaging with both ([68Ga]Ga-NOTA-3TPA14 and [68Ga]Ga-NOTA-3CMP75) in a TNBC mouse model showed precise tumor-targeting capacity in vivo with high signal-to-background ratios. (68Ga)Ga-NOTA-3CMP75 exhibited higher tumor uptake compared to (68Ga)Ga-NOTA-3TPA14. Furthermore, imaging data correlated perfectly with the immunohistochemistry staining results. In conclusion, we found a promising candidate for nanobody-based PET imaging to be further investigated as a diagnostic tool in TNBC.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35961857

RESUMEN

Due to increase of immunotherapy in oncology, it is essential to have a biological characterization of tumors. Knowing which antigens are expressed both on the surface of the tumor cell and at tumor microenvironment in order to predict the tretment response different therapeutic antibodies, has become a need. ImmunoPET is a non-invasive diagnostic imaging tool that combines the high specificity of antibodies against antigens with the high sensitivity, resolution and quantification capacity of PET imaging. With ImmunoPET we obtain a virtual biopsy of tumors, it has a big present and future in preclinical-clinical research, being already a reality in predicting and monitoring the response to treatments with monoclonal antibodies, allowing a selection of patients and therapies reaching a personalized medicine contributing to improve clinical decisions.


Asunto(s)
Anticuerpos , Tomografía de Emisión de Positrones , Humanos , Inmunoterapia , Tomografía de Emisión de Positrones/métodos
11.
Bioconjug Chem ; 33(5): 821-828, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35482594

RESUMEN

We present a simple methodology to design a pretargeted drug delivery system, based on clickable anti-programmed death ligand 1 (anti-PD-L1) antibodies (Abs) and clickable bovine serum albumin (BSA) nanoparticles (NPs). Pretargeted drug delivery is based on the decoupling of a targeting moiety and a drug-delivering vector which can then react in vivo after separate injections. This may be key to achieve active targeting of drug-delivering NPs toward cancerous tissue. In pretargeted approaches, drug-delivering NPs were observed to accumulate in a higher amount in the targeted tissue due to shielding-related enhanced blood circulation and size-related enhanced tissue penetration. In this work, BSA NPs were produced using the solvent precipitation methodology that renders colloidally stable NPs, which were subsequently functionalized with a clickable moiety based on chlorosydnone (Cl-Syd). Those reactive groups are able to specifically react with dibenzocyclooctyne (DBCO) groups in a click-type fashion, reaching second-order reaction rate constants as high as 1.9 M-1·s-1, which makes this reaction highly suitable for in vivo applications. The presence of reactive Cl-Syd was demonstrated by reacting the functionalized NPs with a DBCO-modified sulfo-cyanine-5 dye. With this reaction, it was possible to infer the number of reactive moieties per NPs. Finally, and with the aim of demonstrating the suitability of this system to be used in pretargeted strategies, functionalized fluorescent NPs were used to label H358 cells with a clickable anti-PD-L1 Ab, applying the reaction between Cl-Syd and DBCO as corresponding clickable groups. The results of these experiments demonstrate the bio-orthogonality of the system to perform the reaction in vitro, in a period as short as 15 min.


Asunto(s)
Antígeno B7-H1 , Nanopartículas , Neoplasias , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Inmunoterapia , Terapia Molecular Dirigida , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Albúmina Sérica Bovina/administración & dosificación , Albúmina Sérica Bovina/química
12.
Cell Death Differ ; 29(8): 1474-1485, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058575

RESUMEN

Alteration of centrosome function and dynamics results in major defects during chromosome segregation and is associated with primary autosomal microcephaly (MCPH). Despite the knowledge accumulated in the last few years, why some centrosomal defects specifically affect neural progenitors is not clear. We describe here that the centrosomal kinase PLK1 controls centrosome asymmetry and cell fate in neural progenitors during development. Gain- or loss-of-function mutations in Plk1, as well as deficiencies in the MCPH genes Cdk5rap2 (MCPH3) and Cep135 (MCPH8), lead to abnormal asymmetry in the centrosomes carrying the mother and daughter centriole in neural progenitors. However, whereas loss of MCPH proteins leads to increased centrosome asymmetry and microcephaly, deficient PLK1 activity results in reduced asymmetry and increased expansion of neural progenitors and cortical growth during mid-gestation. The combination of PLK1 and MCPH mutations results in increased microcephaly accompanied by more aggressive centrosomal and mitotic abnormalities. In addition to highlighting the delicate balance in the level and activity of centrosomal regulators, these data suggest that human PLK1, which maps to 16p12.1, may contribute to the neurodevelopmental defects associated with 16p11.2-p12.2 microdeletions and microduplications in children with developmental delay and dysmorphic features.


Asunto(s)
Proteínas de Ciclo Celular , Microcefalia , Células-Madre Neurales , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Centrosoma/metabolismo , Niño , Segregación Cromosómica , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
13.
Nat Commun ; 12(1): 5343, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504088

RESUMEN

Mucopolysaccharidosis type IVA (MPSIVA) or Morquio A disease, a lysosomal storage disorder, is caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, resulting in keratan sulfate (KS) and chondroitin-6-sulfate accumulation. Patients develop severe skeletal dysplasia, early cartilage deterioration and life-threatening heart and tracheal complications. There is no cure and enzyme replacement therapy cannot correct skeletal abnormalities. Here, using CRISPR/Cas9 technology, we generate the first MPSIVA rat model recapitulating all skeletal and non-skeletal alterations experienced by patients. Treatment of MPSIVA rats with adeno-associated viral vector serotype 9 encoding Galns (AAV9-Galns) results in widespread transduction of bones, cartilage and peripheral tissues. This led to long-term (1 year) increase of GALNS activity and whole-body correction of KS levels, thus preventing body size reduction and severe alterations of bones, teeth, joints, trachea and heart. This study demonstrates the potential of AAV9-Galns gene therapy to correct the disabling MPSIVA pathology, providing strong rationale for future clinical translation to MPSIVA patients.


Asunto(s)
Condroitinsulfatasas/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Mucopolisacaridosis IV/terapia , Sistema Musculoesquelético/metabolismo , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Cartílago Articular/ultraestructura , Condroitinsulfatasas/deficiencia , Condroitinsulfatasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos/genética , Humanos , Masculino , Microscopía Electrónica de Transmisión , Mucopolisacaridosis IV/enzimología , Mucopolisacaridosis IV/genética , Sistema Musculoesquelético/patología , Sistema Musculoesquelético/ultraestructura , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Resultado del Tratamiento
14.
Antibiotics (Basel) ; 10(6)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204833

RESUMEN

Fungal PJI is one of the most feared complications after arthroplasty. Although a rare finding, its high associated morbidity and mortality makes it an important object of study. The most frequent species causing fungal PJI is C. albicans. New technology to treat this type of PJI involves organic-inorganic sol-gels loaded with antifungals, as proposed in this study, in which anidulafungin is associated with organophosphates. This study aimed to evaluate the efficacy of an anidulafungin-loaded organic-inorganic sol-gel in preventing prosthetic joint infection (PJI), caused by Candida albicans using an in vivo murine model that evaluates many different variables. Fifty percent (3/6) of mice in the C. albicans-infected, non-coated, chemical-polished (CP)-implant group had positive culture and 100% of the animals in the C. albicans-infected, anidulafungin-loaded, sol-gel coated (CP + A)-implant group had a negative culture (0/6) (p = 0.023). Taking the microbiology and pathology results into account, 54.5% (6/11) of C. albicans-infected CP-implant mice were diagnosed with a PJI, whilst only 9.1% (1/11) of C. albicans-infected CP + A-implant mice were PJI-positive (p = 0.011). No differences were observed between the bone mineral content and bone mineral density of noninfected CP and noninfected CP + A (p = 0.835, and p = 0.181, respectively). No histological or histochemical differences were found in the tissue area occupied by the implant among CP and CP + A. Only 2 of the 6 behavioural variables evaluated exhibited changes during the study: limping and piloerection. In conclusion, the anidulafungin-loaded sol-gel coating showed an excellent antifungal response in vivo and can prevent PJI due to C. albicans in this experimental model.

15.
Nat Commun ; 12(1): 3660, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135321

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) integrates cellular nutrient signaling and hormonal cues to control metabolism. We have previously shown that constitutive nutrient signaling to mTORC1 by means of genetic activation of RagA (expression of GTP-locked RagA, or RagAGTP) in mice resulted in a fatal energetic crisis at birth. Herein, we rescue neonatal lethality in RagAGTP mice and find morphometric and metabolic alterations that span glucose, lipid, ketone, bile acid and amino acid homeostasis in adults, and a median lifespan of nine months. Proteomic and metabolomic analyses of livers from RagAGTP mice reveal a failed metabolic adaptation to fasting due to a global impairment in PPARα transcriptional program. These metabolic defects are partially recapitulated by restricting activation of RagA to hepatocytes, and revert by pharmacological inhibition of mTORC1. Constitutive hepatic nutrient signaling does not cause hepatocellular damage and carcinomas, unlike genetic activation of growth factor signaling upstream of mTORC1. In summary, RagA signaling dictates dynamic responses to feeding-fasting cycles to tune metabolism so as to match the nutritional state.


Asunto(s)
Ayuno/metabolismo , Hígado/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Homeostasis , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Nutrientes/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fenotipo , Proteómica , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Sirolimus/farmacología , Transcripción Genética/efectos de los fármacos , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
16.
Adv Sci (Weinh) ; 8(16): e2101107, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34096198

RESUMEN

Nanotechnology changed the concept of treatment for a variety of diseases, producing a huge impact regarding drug and gene delivery. Among the different targeted diseases, osteoporosis has devastating clinical and economic consequences. Since current osteoporosis treatments present several side effects, new treatment approaches are needed. Recently, the application of small interfering RNA (siRNA) has become a promising alternative. Wnt/ß-catenin signaling pathway controls bone development and formation. This pathway is negatively regulated by sclerostin, which knock-down through siRNA application would potentially promote bone formation. However, the major bottleneck for siRNA-based treatments is the necessity of a delivery vector, bringing nanotechnology as a potential solution. Among the available nanocarriers, mesoporous silica nanoparticles (MSNs) have attracted great attention for intracellular delivery of siRNAs. The mesoporous structure of MSNs permits the delivery of siRNAs together with another biomolecule, achieving a combination therapy. Here, the effectiveness of a new potential osteoporosis treatment based on MSNs is evaluated. The proposed system is effective in delivering SOST siRNA and osteostatin through systemic injection to bone tissue. The nanoparticle administration produced an increase expression of osteogenic related genes improving the bone microarchitecture. The treated osteoporotic mice recovered values of a healthy situation approaching to osteoporosis remission.


Asunto(s)
Nanopartículas/uso terapéutico , Osteogénesis , Osteoporosis/terapia , ARN Interferente Pequeño/administración & dosificación , Dióxido de Silicio/administración & dosificación , Animales , Modelos Animales de Enfermedad , Ratones , Porosidad , Inducción de Remisión/métodos
17.
Curr Probl Diagn Radiol ; 50(3): 430-435, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32703538

RESUMEN

The clinical management of COVID-19 is challenging. Medical imaging plays a critical role in the early detection, clinical monitoring and outcomes assessment of this disease. Chest x-ray radiography and computed tomography) are the standard imaging modalities used for the structural assessment of the disease status, while functional imaging (namely, positron emission tomography) has had limited application. Artificial intelligence can enhance the predictive power and utilization of these imaging approaches and new approaches focusing on detection, stratification and prognostication are showing encouraging results. We review the current landscape of these imaging modalities and artificial intelligence approaches as applied in COVID-19 management.


Asunto(s)
Inteligencia Artificial , COVID-19/prevención & control , Diagnóstico por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Humanos , SARS-CoV-2
18.
Clin Cancer Res ; 26(1): 35-45, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597662

RESUMEN

PURPOSE: We previously demonstrated that mitochondrial inhibitors' efficacy was restricted to a metabolic context in which mitochondrial respiration was the predominant energy source, a situation achievable by inducing vascular normalization/hypoxia correction with antiangiogenics. Vascular normalization can be tracked with 2[18F]fluoro-2-deoxy-d-glucose (FDG)-PET. We tested the efficacy of the mitochondrial inhibitor ME-344 or placebo added to bevacizumab in early breast cancer. PATIENTS AND METHODS: Treatment-naïve HER2-negative patients with T > 1 cm (any N) underwent a breast-centered 18F-fluorodeoxyglucose (FDG)-PET (day 1) and received a single dose of bevacizumab (15 mg/kg), followed by a second FDG-PET (day 8). Patients were then randomized (1:1) to Arm A (ME-344 10 mg/kg intravenous on days 8, 15, and 21) or Arm B (placebo). Tumors were biopsied on days 0 and 29. Succinate dehydrogenase enzyme histochemistry (SDH-EHC), confocal microscopy of vessel architecture, and HIF1α staining were performed in pre- and posttreatment biopsies to assess the pharmacodynamics, vessel normalization, and tissue re-oxygenation by bevacizumab, respectively. RESULTS: ME-344 displayed significant biological activity versus placebo: compared with a 186% increase in Arm B, Ki67 decreased by 23.4% from days 0 to 28 in Arm A (P < 0.001) (N = 42 patients). FDG-PET predicted vascular normalization in about one-third of the patients in each arm, which was confirmed using confocal microscopy and HIF1α staining. In the subgroup with vascular normalization, ME-344 induced a Ki67 decrease of 33.4% (placebo: 11.8 increase). SDH-EHC suggested on-target effects of ME-344. CONCLUSIONS: ME-344 has significant biological antitumor activity in HER2-negative breast cancer, particularly after induction of vascular normalization and tissue reoxygenation with bevacizumab.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Receptor ErbB-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Bevacizumab/administración & dosificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Isoflavonas/administración & dosificación , Antígeno Ki-67/metabolismo , Persona de Mediana Edad , Estadificación de Neoplasias , Seguridad del Paciente , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Succinato Deshidrogenasa/metabolismo , Resultado del Tratamiento
19.
Cancer Cell ; 35(4): 573-587.e6, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30975481

RESUMEN

Five-year survival for pancreatic ductal adenocarcinoma (PDAC) patients remains below 7% due to the lack of effective treatments. Here, we report that combined ablation of EGFR and c-RAF expression results in complete regression of a significant percentage of PDAC tumors driven by Kras/Trp53 mutations in genetically engineered mice. Moreover, systemic elimination of these targets induces toxicities that are well tolerated. Response to this targeted therapy correlates with transcriptional profiles that resemble those observed in human PDACs. Finally, inhibition of EGFR and c-RAF expression effectively blocked tumor progression in nine independent patient-derived xenografts carrying KRAS and TP53 mutations. These results open the door to the development of targeted therapies for PDAC patients.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Gene Ther ; 26(7-8): 216-233, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30622324

RESUMEN

Interleukin 12 is a promising anti-cancer agent; however, IL12 systemic administration is hampered by side-effects. Although intratumoral administration of IL12 is giving promising results in clinical trials, only a small percentage of patients show a complete therapeutic response. This outcome could be improved by controlling the IL12 expression window. In this work we have tested the efficacy of a self-processing P2A and codon optimized murine IL12 (mIL12Pop) using inflammation-regulated lentivectors in a syngeneic tumor model. Our results show that implantation of cells expressing mIL12Pop employing either the strong constitutive SFFV promoter or a NFkB-based promoter reduced tumor growth, caused CD8+ T cell activation and increased IFNγ production. Importantly, the use of NFkBp-mIL12Pop increased the number of CD8+ TILs and improved the remission rate without increasing IL12-serum concentration. Further experiments suggest that there is a threshold intratumoral IL12 concentration that must be reached to trigger an efficient antitumor response and a limit that once surpassed causes detrimental systemic side effects. Altogether, these results demonstrate that using NFKBp-mIL12Pop significantly increases the overall survival of the mice. In summary, this new inflammation-regulated expression system might be useful for the development of new IL12 delivery systems with improved anti-tumor activity and limited toxicity.


Asunto(s)
Interleucina-12/uso terapéutico , FN-kappa B/metabolismo , Animales , Línea Celular Tumoral , Humanos , Interleucina-12/farmacología , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA