Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Zool ; 69(2): 208-214, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091991

RESUMEN

Drones are increasingly used for fauna monitoring and wildlife tracking; however, their application for wildlife tracking is restricted by developing such systems. Here we explore the potential of drones for wildlife tracking using an off-the-shelf system that is easy to use by non-specialists consisting of a multirotor drone, smartphones, and commercial tracking devices via Bluetooth and Ultra-Wide Band (UWB). We present the system configuration, explore the operational parameters that can affect detection capabilities, and test the effectiveness of the system for locating targets by simulating target animals in savanna and forest environments. The self-contained tracking system was built without hardware or software customization. In 40 tracking flights carried out in the Brazilian Cerrado, we obtained a detection rate of 90% in savanna and 40% in forest areas. Tests for targets in movement (N = 20), the detection rates were 90% in the savanna and 30% in the forest areas. The spatial accuracy obtained by the system was 14.61 m, being significantly more accurate in savanna ( x ¯ = 10.53) than in forest areas ( x ¯ = 13.06). This approach to wildlife tracking facilitates the use of drones by non-specialists at an affordable cost for conservation projects with limited resources. The reduced size of the tags, the long battery life, and the lower cost compared to GPS-tags open up a range of opportunities for animal tracking.

2.
PLoS One ; 16(8): e0255559, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388153

RESUMEN

Despite the proved usefulness of drones in biodiversity studies, acquisition costs and difficulties in operating, maintaining and repairing these systems constrain their integration in conservation projects, particularly for low-income countries. Here we present the steps necessary to build a low-cost fixed-wing drone for environmental applications in large areas, along with instructions to increase the reliability of the system and testing its performance. Inspired by DIY (Do It Yourself) and open source models, this work prioritizes simplicity and accounts for cost-benefit for the researcher. The DIY fixed-wing drone developed has electric propulsion, can perform pre-programmed flight, can carry up to 500 g payload capacity with 65 minutes flight duration and flies at a maximum distance of 20 km. It is equipped with a RGB (Red, Green and Blue) sensor capable of obtaining 2.8 cm per pixel Ground Sample Distance (GSD) resolution at a constant altitude of 100 m above ground level (AGL). The total cost was $995 which is substantially less than the average value of similar commercial drones used in biodiversity studies. We performed 12 flight tests in auto mode using the developed model in protected areas in Brazil, obtaining RGB images that allowed us to identify deforestation spots smaller than 5 m2 and medium-sized animals. Building DIY drones requires some technical knowledge and demands more time than buying a commercial ready-to-fly system, but as proved here, it can be less expensive, which is often crucial in conservation projects.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques , Tecnología de Sensores Remotos/métodos , Tecnología de Sensores Remotos/normas , Brasil , Humanos
3.
Curr Zool ; 67(2): 157-163, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33854533

RESUMEN

There is a growing body of research indicating that drones can disturb animals. However, it is usually unclear whether the disturbance is due to visual or auditory cues. Here, we examined the effect of drone flights on the behavior of great dusky swifts Cypseloides senex and white-collared swifts Streptoprocne zonaris in 2 breeding sites where drone noise was obscured by environmental noise from waterfalls and any disturbance must be largely visual. We performed 12 experimental flights with a multirotor drone at different vertical, horizontal, and diagonal distances from the colonies. From all flights, 17% caused <1% of birds to temporarily abandon the breeding site, 50% caused half to abandon, and 33% caused more than half to abandon. We found that the diagonal distance explained 98.9% of the variability of the disturbance percentage and while at distances >50 m the disturbance percentage does not exceed 20%, at <40 m the disturbance percentage increase to > 60%. We recommend that flights with a multirotor drone during the breeding period should be conducted at a distance of >50 m and that recreational flights should be discouraged or conducted at larger distances (e.g. 100 m) in nesting birds areas such as waterfalls, canyons, and caves.

4.
PLoS One ; 12(6): e0178448, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28636611

RESUMEN

The use of small Unmanned Aircraft Systems (UAS; also known as "drones") for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals' responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals' reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices.


Asunto(s)
Aeronaves , Animales Salvajes/fisiología , Animales Salvajes/psicología , Conducta Animal , Animales
5.
PLoS One ; 11(7): e0157440, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27455066

RESUMEN

Avian nests are frequently concealed or camouflaged, but a number of species builds noticeable nests or use conspicuous materials for nest decoration. In most cases, nest decoration has a role in mate choice or provides thermoregulatory or antiparasitic benefits. In territorial species however, decorations may serve additional or complementary functions, such as extended phenotypic signaling of nest-site occupancy and social status to potential intruders. The latter may benefit both signaler and receiver by minimizing the risk of aggressive interactions, especially in organisms with dangerous weaponry. Support for this hypothesis was recently found in a population of black kites (Milvus migrans), a territorial raptor that decorates its nest with white artificial materials. However, the crucial assumption that nest decorations increased nest-site visibility to conspecifics was not assessed, a key aspect given that black kite nests may be well concealed within the canopy. Here, we used an unmanned aircraft system to take pictures of black kite nests, with and without an experimentally placed decoration, from different altitudes and distances simulating the perspective of a flying and approaching, prospecting intruder. The pictures were shown to human volunteers through a standardized routine to determine whether detection rates varied according the nest decoration status and distance. Decorated nests consistently showed a higher detection frequency and a lower detection-latency, compared to undecorated versions of the same nests. Our results confirm that nest decoration in this species may act as a signaling medium that enhances nest visibility for aerial receivers, even at large distances. This finding complements previous work on this communication system, which showed that nest decoration was a threat informing trespassing conspecifics on the social dominance, territory quality and fighting capabilities of the signaler.


Asunto(s)
Comportamiento de Nidificación , Rapaces , Animales
6.
Ecol Evol ; 5(21): 4808-18, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26640661

RESUMEN

The knowledge about the spatial ecology and distribution of organisms is important for both basic and applied science. Biologging is one of the most popular methods for obtaining information about spatial distribution of animals, but requires capturing the animals and is often limited by costs and data retrieval. Unmanned Aircraft Systems (UAS) have proven their efficacy for wildlife surveillance and habitat monitoring, but their potential contribution to the prediction of animal distribution patterns and abundance has not been thoroughly evaluated. In this study, we assess the usefulness of UAS overflights to (1) get data to model the distribution of free-ranging cattle for a comparison with results obtained from biologged (GPS-GSM collared) cattle and (2) predict species densities for a comparison with actual density in a protected area. UAS and biologging derived data models provided similar distribution patterns. Predictions from the UAS model overestimated cattle densities, which may be associated with higher aggregated distributions of this species. Overall, while the particular researcher interests and species characteristics will influence the method of choice for each study, we demonstrate here that UAS constitute a noninvasive methodology able to provide accurate spatial data useful for ecological research, wildlife management and rangeland planning.

7.
PLoS One ; 9(1): e83873, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416177

RESUMEN

Over the last years there has been a massive increase in rhinoceros poaching incidents, with more than two individuals killed per day in South Africa in the first months of 2013. Immediate actions are needed to preserve current populations and the agents involved in their protection are demanding new technologies to increase their efficiency in the field. We assessed the use of remotely piloted aircraft systems (RPAS) to monitor for poaching activities. We performed 20 flights with 3 types of cameras: visual photo, HD video and thermal video, to test the ability of the systems to detect (a) rhinoceros, (b) people acting as poachers and (c) to do fence surveillance. The study area consisted of several large game farms in KwaZulu-Natal province, South Africa. The targets were better detected at the lowest altitudes, but to operate the plane safely and in a discreet way, altitudes between 100 and 180 m were the most convenient. Open areas facilitated target detection, while forest habitats complicated it. Detectability using visual cameras was higher at morning and midday, but the thermal camera provided the best images in the morning and at night. Considering not only the technical capabilities of the systems but also the poachers modus operandi and the current control methods, we propose RPAS usage as a tool for surveillance of sensitive areas, for supporting field anti-poaching operations, as a deterrent tool for poachers and as a complementary method for rhinoceros ecology research. Here, we demonstrate that low cost RPAS can be useful for rhinoceros stakeholders for field control procedures. There are, however, important practical limitations that should be considered for their successful and realistic integration in the anti-poaching battle.


Asunto(s)
Aeronaves , Conservación de los Recursos Naturales/métodos , Perisodáctilos/fisiología , Tecnología de Sensores Remotos/instrumentación , Tecnología de Sensores Remotos/métodos , Aeronaves/economía , Animales , Conservación de los Recursos Naturales/economía , Fotograbar , Sudáfrica , Grabación en Video
8.
PLoS One ; 9(12): e115608, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25551673

RESUMEN

Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts' distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance.


Asunto(s)
Aeronaves , Bovinos/microbiología , Ciervos/microbiología , Monitoreo Epidemiológico/veterinaria , Análisis Espacial , Sus scrofa/microbiología , Animales , Especificidad del Huésped , Factores de Riesgo , Tuberculosis/epidemiología , Tuberculosis/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...