Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Colloid Interface Sci ; 331: 103248, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033588

RESUMEN

Polypeptides have shown an excellent potential in nanomedicine thanks to their biocompatibility, biodegradability, high functionality, and responsiveness to several stimuli. Polypeptides exhibit high propensity to organize at the supramolecular level; hence, they have been extensively considered as building blocks in the layer-by-layer (LbL) assembly. The LbL technique is a highly versatile methodology, which involves the sequential assembly of building blocks, mainly driven by electrostatic interactions, onto planar or colloidal templates to fabricate sophisticated multilayer nanoarchitectures. The simplicity and the mild conditions required in the LbL approach have led to the inclusion of biopolymers and bioactive molecules for the fabrication of a wide spectrum of biodegradable, biocompatible, and precisely engineered multilayer films for biomedical applications. This review focuses on those examples in which polypeptides have been used as building blocks of multilayer nanoarchitectures for tissue engineering and drug delivery applications, highlighting the characteristics of the polypeptides and the strategies adopted to increase the stability of the multilayer film. Cross-linking is presented as a powerful strategy to enhance the stability and stiffness of the multilayer network, which is a fundamental requirement for biomedical applications. For example, in tissue engineering, a stiff multilayer coating, the presence of adhesion promoters, and/or bioactive molecules boost the adhesion, growth, and differentiation of cells. On the contrary, antimicrobial coatings should repel and inhibit the growth of bacteria. In drug delivery applications, mainly focused on particles and capsules at the micro- and nano-meter scale, the stability of the multilayer film is crucial in terms of retention and controlled release of the payload. Recent advances have shown the key role of the polypeptides in the adsorption of genetic material with high loading efficiency, and in addressing different pathways of the particles/capsules during the intracellular uptake, paving the way for applications in personalized medicine. Although there are a few studies, the responsiveness of the polypeptides to the pH changes, together with the inclusion of stimuli-responsive entities into the multilayer network, represents a further key factor for the development of smart drug delivery systems to promote a sustained release of therapeutics. The degradability of polypeptides may be an obstacle in certain scenarios for the controlled intracellular release of a drug once an external stimulus is applied. Nowadays, the highly engineered design of biodegradable LbL particles/capsules is oriented on the development of theranostics that, limited to use of polypeptides, are still in their infancy.


Asunto(s)
Coloides , Péptidos , Ingeniería de Tejidos , Péptidos/química , Péptidos/farmacología , Humanos , Ingeniería de Tejidos/métodos , Coloides/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Propiedades de Superficie
2.
Nanotechnology ; 34(24)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36827699

RESUMEN

Graphene oxide (GO) and reduced graphene oxide have outstanding qualities that could be exploited as reinforcement and antibacterial agents in a plethora of biomedical applications. In this contribution, it is reported the deployment of a polyacrylamide GO-hydrogel composite (GO@pAAm) which was photo-converted and structured by ultra-short laser irradiation using a direct laser writing (DLW) approach. The materials were characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and confocal microscopy. The laser structure generates a multi-photo-induced effect: surface foaming and patterning, microdomains with enhanced selective water-swelling and effective GO photo-reduction. A first laser scan seems likely to induce the photo-reduction of GO and subsequent laser pulses trigger the structure/foaming. The photo-reduction of GO is evidenced by Raman spectroscopy by the relatively changing intensities of the D to G signals. Macroscopically by an increase in conductivity (decrease in sheet resistance fromRS-GO@pAAm= 304 ± 20 kΩ sq-1toRS-rGO@pAAm-DLW= 27 ± 8 kΩ sq-1) suggesting a reduction of the material measured by 4-Point-Probe.

3.
Sci Rep ; 12(1): 17728, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273021

RESUMEN

The combination of direct laser interference patterning (DLIP) with laser-induced periodic surface structures (LIPSS) enables the fabrication of functional surfaces reported for a wide spectrum of materials. The process throughput is usually increased by applying higher average laser powers. However, this causes heat accumulation impacting the roughness and shape of produced surface patterns. Consequently, the effect of substrate temperature on the topography of fabricated features requires detailed investigations. In this study, steel surfaces were structured with line-like patterns by ps-DLIP at 532 nm. To investigate the influence of substrate temperature on the resulting topography, a heating plate was used to adjust the temperature. Heating to 250 [Formula: see text]C led to a significant reduction of the produced structure depths, from 2.33 to 1.06 µm. The reduction is associated with the appearance of a different LIPSS type, depending on the grain orientation of the substrates and laser-induced superficial oxidation. This study revealed a strong effect of substrate temperature, which is also to be expected when heat accumulation effects arise from processing surfaces at high average laser power.

4.
Colloids Surf B Biointerfaces ; 188: 110801, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31955014

RESUMEN

A commercial biomedical Polyimide (PI) film was topographically and chemically modified by generating micrometric periodic arrays of lines using Direct Laser Interference Patterning (DLIP) in order to improve antifouling and antibacterial properties. DLIP patterning was performed with periods from 1 µm to 10 µm. The physical modification of the surface was characterized by SEM, AFM and contact angle measurements and, the chemical composition of the ablated surfaces was analyzed by ATR-IR and XPS spectroscopies. The antibacterial effects were evaluated through the effect on Pseudomonas aeruginosa colonies growth on the LB (Luria Bertani) broth. The results showed that the laser treatment change the topography and as a consequence the chemistry surface, also that the microstructured surfaces with periods below 2 µm, exhibited a significant bacterial (P. aeruginosa) adhesion decrease compared with non-structured surfaces or with surfaces with periods higher than 2 µm. The results suggest that periodic topography only confer antifouling properties and reduction of the biofilm formation when the microstructure presents periods ranging from 1 µm to 2 µm. On the other hand, the topography that confer strong antifouling superficial properties persists at long incubation times. In that way, polymer applications in the biosciences field can be improved by a surface topography modification using a simple, single-step laser-assisted ablation method.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Desarrollo de Medicamentos , Pseudomonas aeruginosa/efectos de los fármacos , Resinas Sintéticas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Resinas Sintéticas/síntesis química , Resinas Sintéticas/química , Propiedades de Superficie
5.
Int J Biol Macromol ; 122: 1253-1261, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219512

RESUMEN

Alpha-amylase was immobilized inside three different polymeric matrices: polyacrylamide hydrogel (PAAm), polyacrylamide-graphene oxide nanocomposite (PAAm-GO) and alginate in order to study and compare the effect of the matrix on the catalytic performance. The morphology, swelling, mechanical properties, retention efficiency, and the catalytic behavior of these newly supported biocatalysts were studied. Nanocomposite made of PAAm-GO matrix incorporated 98% of the enzyme, likely through a cooperative effect, while alginate gels incorporated only 30%. Moreover, the enzyme retention using PAAm-GO reached a value of 97.5%. Starch hydrolysis catalyzed by the immobilized enzyme in PAAm-GO matrix showed similar kinetics profiles up to 5 cycles suggesting that the enzymatic activity is retained. These results compare very favorably with conventional immobilization in alginate where almost no activity was observed after 3 cycles. All results suggest that the PAAm matrices protect the biocatalyst allowing its reusability. Moreover, the improvements in enzyme catalytic properties via immobilization made this system as an excellent candidate in bio-industrial applications such as bioethanol production. Furthermore, the synthesized catalyst could produce a high yield of bioethanol by using enzymes and yeast immobilized in the same PAAm matrix. In this way, it is possible to produce sequential or simultaneous saccharification and fermentation.


Asunto(s)
Resinas Acrílicas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Grafito/química , Nanocompuestos/química , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Aspergillus oryzae/enzimología , Elasticidad , Cinética , Nanoporos , Óxidos/química , Viscosidad
6.
Mater Sci Eng C Mater Biol Appl ; 90: 461-467, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29853114

RESUMEN

The present work aimed to study the properties of a novel nanocomposite with promising biomedical applications. Nanocomposites were prepared by the addition of different concentrations of chitosan decorated carbon nanotubes to acrylamide-co-acrylic acid hydrogels. The nanocomposites chemical structure was characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The FT-IR shows the typical bands due to the hydrogel and additionally the peaks at 1750 cm-1 and 1450 cm-1 that correspond to the carbon nanotubes incorporated into the polymer matrix. Mechanical properties and swelling measurements in different buffer solutions were also performed. The nanocomposites showed improved mechanical properties and a stronger pH-response. In order to evaluate antimicrobial activity, the growth and adhesion of Staphylococcus aureus to nanocomposites were studied. Cytocompatibility was also evaluated by MTT assay on MDCK and 3T3 cell lines. The nanocomposites were found to be cytocompatible and showed a reduced bacterial colonization.


Asunto(s)
Antibacterianos/química , Quitosano/química , Hidrogeles/química , Nanocompuestos/química , Nanotubos de Carbono/química , Animales , Antibacterianos/efectos adversos , Materiales Biocompatibles/química , Línea Celular , Perros , Concentración de Iones de Hidrógeno , Ratones , Espectroscopía Infrarroja por Transformada de Fourier
7.
J Biotechnol ; 233: 56-65, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27396938

RESUMEN

Performance of yeasts on industrial processes can be dramatically improved by immobilization of the biocatalyst. The immobilization of Saccharomyces cerevisiae inside monolithic macroporous hydrogels were produced by in-situ polymerization of acrylamide around a live yeast suspension under cryogelation conditions. Preculture of the yeasts was not necessary and this innovative and simple procedure is amenable to scaling-up to industrial production. The yeasts were efficiently retained in monolithic hydrogels, presenting excellent mechanical properties and high cell viability. Macroporous hydrogels showed a fast mass transport allowing the hydrogel-yeast complexes achieved similar ethanol yield and productivity than free yeasts, which is larger than those reached with yeasts immobilized in compact hydrogels. Moreover, the same yeasts were able to maintain its activity by up to five reaction cycles with a cell single batch during fermentation reactions.


Asunto(s)
Biocombustibles , Reactores Biológicos/microbiología , Células Inmovilizadas/metabolismo , Etanol/análisis , Etanol/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Saccharomyces cerevisiae/metabolismo , Biocombustibles/análisis , Biocombustibles/microbiología , Supervivencia Celular , Equipo Reutilizado , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA