Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 5: 4276, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25008948

RESUMEN

Phloem, a plant tissue responsible for long-distance molecular transport, harbours specific junctions, sieve areas, between the conducting cells. To date, little is known about the molecular framework related to the biogenesis of these sieve areas. Here we identify mutations at the CHER1/AtCTL1 locus of Arabidopsis thaliana. The mutations cause several phenotypic abnormalities, including reduced pore density and altered pore structure in the sieve areas associated with impaired phloem function. CHER1 encodes a member of a poorly characterized choline transporter-like protein family in plants and animals. We show that CHER1 facilitates choline transport, localizes to the trans-Golgi network, and during cytokinesis is associated with the phragmoplast. Consistent with its function in the elaboration of the sieve areas, CHER1 has a sustained, polar localization in the forming sieve plates. Our results indicate that the regulation of choline levels is crucial for phloem development and conductivity in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Comunicación Celular/fisiología , Glicósido Hidrolasas/fisiología , Floema/crecimiento & desarrollo , Desarrollo de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Comunicación Celular/genética , Polaridad Celular/genética , Polaridad Celular/fisiología , Citocinesis/genética , Citocinesis/fisiología , Glicósido Hidrolasas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Mutación/genética , Floema/genética , Floema/fisiología , Desarrollo de la Planta/genética
2.
Front Plant Sci ; 3: 151, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22811681

RESUMEN

Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...