Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Res ; : 1-13, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962912

RESUMEN

This study evaluated the effects of topically applied hydrogels (HG) containing nanoencapsulated indol-3-carbinol (I3C) and its free form in a rat model of skin wounds. Formulations were topically applied twice a day for five days to the wounds. On days 1, 3, and 6, the wound area was measured to verify the % of regression. On the sixth day, the animals were euthanized for the analysis of the inflammatory and oxidative profile in wounds. The nanocapsules (NC) exhibited physicochemical characteristics compatible with this kind of suspension. After five hours of exposure to ultraviolet C, more than 78% of I3C content in the suspensions was still observed. The NC-I3C did not modify the physicochemical characteristics of HG when compared to the HG base. In the in vivo study, an increase in the size of the wound was observed on the 3rd experimental day, which was lower in the treated groups (mainly in HG-NC-I3C) compared to the control. On the 6th day, HG-I3C, HG-NC-B, and HG-NC-I3C showed lower regression of the wound compared to the control. Additionally, HG-NC-I3C exhibited an anti-inflammatory effect (as observed by decreased levels of interleukin-1B and myeloperoxidase), reduced oxidative damage (by decreased reactive species, lipid peroxidation, and protein carbonylation levels), and increased antioxidant defense (by improved catalase activity and vitamin C levels) compared to the control. The current study showed more satisfactory results in the HG-NC-I3C group than in the free form of I3C in decreasing acute inflammation and oxidative damage in wounds.


I3C nanocapsules exhibited characteristics compatible with this kind of suspension;On 3rd day, I3C nanocapsules prevented the increase of wound area;I3C nanocapsules decreased oxidative damage in wound tissue;Inflammatory proteins were decreased in I3C nanocapsules treated group.

2.
Behav Brain Res ; 453: 114615, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37558167

RESUMEN

Aspartame (ASP) is a common sweetener, but studies show it can harm the nervous system, causing learning and memory deficits. ß-caryophyllene (BCP), a natural compound found in foods, including bread, coffee, alcoholic beverages, and spices, has already described as a neuroprotector agent. Remarkably, ASP and BCP are commonly consumed, including in the same meal. Therefore, considering that (a) the BCP displays plenty of beneficial effects; (b) the ASP toxicity; and (c) that they can be consumed in the same meal, this study sought to investigate if the BCP would mitigate the memory impairment induced by ASP in rats and investigate the involvement of the brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrKB) signaling pathway and acetylcholinesterase (AChE) activity. Young male Wistar rats received ASP (75 mg/kg; i.g.) and/or BCP (100 mg/kg; i.p.) once daily, for 14 days. At the end of the treatment, the animals were evaluated in the open field and object recognition tests. The cerebral cortex and hippocampus samples were collected for biochemical and molecular analyses. Results showed that the BCP effectively protected against the cognitive damage caused by ASP in short and long-term memories. In addition, BCP mitigated the increase in AChE activity caused by ASP. Molecular insights revealed augmented BDNF and TrKB levels in the hippocampus of rats treated with BCP, indicating greater activation of this pathway. In conclusion, BCP protected against ASP-induced memory impairment. AChE activity and the BDNF/TrkB signaling pathway seem to be potential targets of BCP modulatory role in this study.


Asunto(s)
Acetilcolinesterasa , Disfunción Cognitiva , Animales , Masculino , Ratas , Acetilcolinesterasa/metabolismo , Aspartame/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Ratas Wistar , Receptor trkB/metabolismo , Transducción de Señal , Tropomiosina/metabolismo
3.
Physiol Behav ; 251: 113804, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398334

RESUMEN

INTRODUCTION: Amphetamine (AMPH) abuse results in neurobehavioral alterations related to the reward circuit. The hippocampus plays a role in cognition, reward, and drug addiction. There are no pharmacological approaches to prevent AMPH relapse. Physical exercise has been studied as a non-pharmacological promising influence to attenuate reward symptoms related to addictive drugs. OBJECTIVE: This study aimed to compare the effects of non-weight-loaded and weight-loaded physical exercise on behavioral (relapse, memory and anxiety) and hippocampal molecular parameters associated with AMPH addiction in Wistar rats. METHODS: Male rats were subjected to the AMPH-Conditioned Place Preference (CPP) paradigm. After 8-conditioning days, they were subjected to swimming physical exercise protocol (without or with weight-load). Behavioral evaluations were performed to assess the influence of both exercise protocols in addiction parameters, including relapse after AMPH reconditioning, working memory, locomotor activity, and anxiety-like symptoms. Subsequently, protein levels of Brain-Derived Neurotrophic Factor (BDNF) and pro-BDNF ex-vivo assays were carried out in samples of the hippocampus of the animals. RESULTS: AMPH relapse and anxiety-like behaviors were reduced only in rats subjected to non-weight-loaded exercise. Hippocampal BDNF and pro-BDNF immunoreactivity were increased in non-weight-loaded exercise rats. Behavioral and molecular analyses were not modified in rats subjected to weight-loaded exercise. CONCLUSION: These findings demonstrate that non-weight-loaded exercise was more effective against relapse and anxiety-like behavior induced by AMPH. Non-weight-loaded exercise upregulated the hippocampal immunocontent levels in rats.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Factor Neurotrófico Derivado del Encéfalo , Anfetamina/farmacología , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar , Recurrencia
4.
Chem Biol Interact ; 348: 109635, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506763

RESUMEN

Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 µg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1ß) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.


Asunto(s)
Aflatoxina B1/toxicidad , Citoprotección/efectos de los fármacos , Hígado/efectos de los fármacos , Sesquiterpenos/farmacología , Animales , Antioxidantes/metabolismo , Glutatión/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/citología , Hígado/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
5.
Mol Neurobiol ; 58(10): 5078-5089, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34245440

RESUMEN

Chronic pain and depression often coexist sharing common pathological mechanisms, and available analgesics and antidepressants have demonstrated limited clinical efficacy. Evidence has demonstrated that neuronal oxidative stress, apoptosis, and also glucocorticoid receptor dysregulation facilitate the occurrence and development of both chronic pain and depression. This study evaluated the effect of the organoselenium compound m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] in the pain-depression comorbidity induced by reserpine. Mice were treated with reserpine 0.5 mg/kg for 3 days (intraperitoneal, once a day), and in the next 2 days, they were treated with (m-CF3-PhSe)2 10 mg/kg (intragastric, once a day). Thirty minutes after the last administration of (m-CF3-PhSe)2, mice were subjected to the behavioral testing. (m-CF3-PhSe)2 treatment reverted the reserpine-increased thermal hyperalgesia and depressive-like behavior observed in the hot-plate test and forced swimming test, respectively. Reserpine provoked a decrease of crossings and rearings in the open-field test, while (m-CF3-PhSe)2 presented a tendency to normalize these parameters. Reserpine and/or (m-CF3-PhSe)2 treatments did not alter the locomotor activity of mice observed in the rota-rod test. These effects could be related to modulation of oxidative stress, apoptotic pathway, and glucocorticoid receptors, once (m-CF3-PhSe)2 normalized thiobarbituric acid reactive substances and 4-hydroxynonenal modified protein levels, markers of lipoperoxidation, poly(ADP-ribose) polymerase cleaved/total ratio, and glucocorticoid receptor levels increased by reserpine in the hippocampus. Considering that pain-depression dyad is a complex state of difficult treatment, this organoselenium compound could raise as an interesting alternative to treat pain-depression condition.


Asunto(s)
Dolor Crónico/tratamiento farmacológico , Depresión/tratamiento farmacológico , Compuestos de Organosilicio/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Receptores de Glucocorticoides , Reserpina/toxicidad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Dolor Crónico/inducido químicamente , Dolor Crónico/metabolismo , Depresión/inducido químicamente , Depresión/metabolismo , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Compuestos de Organosilicio/farmacología , Estrés Oxidativo/fisiología , Receptores de Glucocorticoides/metabolismo , Resultado del Tratamiento
6.
Cell Biochem Funct ; 39(5): 646-657, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33720434

RESUMEN

This study investigated whether swimming protocol induces adaptations to sex-specific oxidative stress and Nrf2/Keap-1 pathway in the liver of mice fed a high-calorie diet (HCD) during the early life period. Male and female Swiss mice were fed a standard or high-calorie (enriched with 20% lard and 20% corn syrup) diets, and the trained mice were subjected to a swimming protocol (5 days/week) from 21st to 49th postnatal days. Males fed a HCD had more pronounced alterations in all parameters evaluated than females. Although there was no increase in body weight, the fat deposition was higher in male mice exposed to diet. The intake of HCD induced dyslipidemia mainly in males. In a sex-dependent manner, the hepatic markers of oxidative damage, antioxidant defences, and a sensitive sulfhydryl protein were altered in mice fed a HCD. Swimming counteracted dyslipidemia, hepatic oxidative stress, and the Nrf2/Keap-1 signalling downregulation, in a sex-dependent manner, in mice exposed to a HCD. These findings demonstrate that a non-pharmacological therapy, swimming protocol, contributed to adaptations of sex-specific hepatic oxidative stress and Nrf2/Keap-1 regulation in male mice fed a HCD.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Dislipidemias/inducido químicamente , Hígado Graso/inducido químicamente , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Animales , Regulación hacia Abajo/efectos de los fármacos , Dislipidemias/metabolismo , Hígado Graso/metabolismo , Femenino , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factores Sexuales , Natación
7.
Mol Neurobiol ; 58(5): 2231-2241, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33417225

RESUMEN

Energy-dense foods and ethanol consumption are associated with mood disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been a prominent pharmacological target due to its antidepressant-like effects. This study investigated if the modulation of opioid and glucocorticoid receptors and its well-known antioxidant property contribute to the (m-CF3-PhSe)2 antidepressant-like effect in young mice subjected to an energy-dense diet and ethanol intake. Swiss male mice [postnatal day (PND) 25] were exposed to an energy-dense diet (containing 20% fat and 20% carbohydrate) or standard chow until the PND 67. Mice received ethanol (2 g/kg) or water administration (3 times a week, intragastrically [i.g.]) from PND 45 to PND 60. After that, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g) or vegetal oil administration from PND 60 to 66. Mice performed the behavioral tests to evaluate the depressive-like phenotype. The results showed that individually neither an energy-dense diet nor ethanol group induced a depressive-like phenotype, but the association of both induced this phenotype in young mice. Oxidative stress was characterized by the increase of malondialdehyde, the decrease in the superoxide dismutase activity, and non-protein sulfhydryl levels in the cerebral cortex of depressive-like mice. Depressive-like mice showed an increase in the protein levels of opioid receptors and depletion in those of glucocorticoid. (m-CF3-PhSe)2 abolished depressive-like phenotype and oxidative stress as well as modulated the levels of glucocorticoid and opioid receptors. In conclusion, the modulation of opioid and glucocorticoid receptors and the antioxidant property contributed to the (m-CF3-PhSe)2 antidepressant-like effect in young mice exposed to an energy-dense diet and ethanol intake.


Asunto(s)
Depresión/metabolismo , Dieta , Estilo de Vida , Compuestos de Organosilicio/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Receptores Opioides/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Malondialdehído/metabolismo , Ratones , Actividad Motora/efectos de los fármacos , Compuestos de Organosilicio/farmacología , Superóxido Dismutasa/metabolismo
8.
Neuroscience ; 452: 311-325, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246070

RESUMEN

Increased energy food consumption during early-life has been associated with memory impairment. Swimming training has been reported to improve memory processes in rodent models. This study aimed to evaluate whether moderate-intensity swimming training counteracts learning and memory impairment in young mice fed a high-calorie diet during the early-life period. The contribution of hippocampal oxidative stress, as well as nuclear factor [erythroid-derived 2]-like 2/Kelch-like ECH-associated protein (NRF2/Keap-1/HO-1) and peroxisome proliferator-activated receptor gamma co-activator 1-alpha/mitochondrial transcription factor A (PCG-1α/mtTFA) signaling, in memory effects was also investigated. Three-week-old male Swiss mice received a high-calorie diet (20% fat; 20% carbohydrate enriched) or a standard diet from 21 to 49 postnatal days. Mice performed a moderate-intensity swimming protocol (5 days/week) and behavioral tests predictive of memory function. Mice fed a high-calorie diet and subjected to the swimming protocol performed better on short- and long-term spatial and object recognition memory tests than those fed a high-calorie diet. The swimming protocol modulated the hippocampal NRF2/Keap-1/HO-1 and mtTFA pathways in mice fed a high-calorie diet. Swimming training positively affected location and long-term memory, fat mass content, as well as NRF2/Keap-1/HO-1 and mtTFA proteins of control-diet-fed mice. In conclusion, a moderate-intensity swimming training evoked an adaptive response in mice fed a high-calorie diet by restoring different types of memory-impaired and hippocampal oxidative stress as well as upregulated the NRF2/Keap-1/HO-1 and mtTFA pathways.


Asunto(s)
Proteínas de Unión al ADN , Trastornos de la Memoria , Proteínas Mitocondriales , Factor 2 Relacionado con NF-E2 , Condicionamiento Físico Animal , Factores de Transcripción , Animales , Dieta , Ingestión de Energía , Masculino , Memoria , Trastornos de la Memoria/terapia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA