Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 365
1.
Breast Cancer Res ; 26(1): 86, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807216

Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may play an important role. Extra copies and overexpression of RHOC also occur, although a role for RhoC overexpression in driving tumor formation has not been assessed in vivo. To this end, we report on the development of a Rosa26 (R26)-targeted Cre-conditional RhoC overexpression mouse (R26RhoC). This mouse was crossed to two models for ERBB2/NEU+ breast cancer: one based on expression of an oncogenic ErbB2/Neu cDNA downstream of the endogenous ErbB2 promoter (FloxNeoNeuNT), the other, a metastatic model that is based on high-level expression from MMTV regulatory elements (NIC). RhoC overexpression dramatically enhanced mammary tumor formation in FloxNeoNeuNT mice but showed a more subtle effect in the NIC line, which forms multiple mammary tumors after a very short latency. RhoC overexpression also enhanced mammary tumor formation in an activated Pik3ca model for breast cancer (Pik3caH1047R). The transforming effect of RhoC was associated with epithelial/mesenchymal transition (EMT) in ErbB2/NeuNT and Pik3caH1047R systems. Thus, our study reveals the importance of elevated wildtype Rho protein expression as a driver of breast tumor formation and highlights the significance of Copy Number Abberations that affect Rho signalling.


Class I Phosphatidylinositol 3-Kinases , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases , Receptor, ErbB-2 , rho GTP-Binding Proteins , rhoC GTP-Binding Protein , Animals , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Female , rhoC GTP-Binding Protein/metabolism , rhoC GTP-Binding Protein/genetics , Mice , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics , Humans , Mice, Transgenic , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Signal Transduction
2.
J Clin Invest ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38722697

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske Iron-Sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, they underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA-seq revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in alpha-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.

3.
Pediatr Transplant ; 28(3): e14750, 2024 May.
Article En | MEDLINE | ID: mdl-38623880

BACKGROUND: Pediatric allogeneic hematopoietic cell transplant (allo-HCT) recipients are at risk for morbidity and mortality from human adenovirus (HAdV). HAdV can be detected in an asymptomatic state, referred to as infection or with signs or symptoms of illness, referred to as disease. Standardized case definitions are needed to distinguish infection from disease and allow for consistent reporting in both observational cohort studies and therapeutic clinical trials. METHODS: A working group of experts in virology, transplant infectious disease, and HCT was assembled to develop HAdV infection and disease definitions with the degree of certainty (i.e., possible, probable, and proven). Definitions were further refined through an iterative process and independently applied by two central review committees (CRCs) to 20 pediatric allo-HCT recipients with at least one HAdV-positive PCR. RESULTS: Initial HAdV infection and disease definitions were developed and updated through an iterative process after reviewing clinical and virological details for 81 subjects with at least one positive HAdV PCR detected in a clinical specimen. Independent application of final definitions to 20 HAdV positive allo-HCT recipients by two CRCs yielded similar number of HAdV infection or disease events but with variation of degree of certainty for some events. CONCLUSIONS: Application of definitions by a CRC for a study of HAdV infection and disease is feasible and can provide consistency in the assignment of outcomes. Definitions need further refinement to improve reproducibility and to provide guidance on determining clinical improvement or worsening after initial diagnosis of HAdV infection or disease.


Adenovirus Infections, Human , Adenoviruses, Human , Hematopoietic Stem Cell Transplantation , Child , Humans , Adenovirus Infections, Human/diagnosis , Reproducibility of Results , Transplantation, Homologous , Cohort Studies
4.
J Leukoc Biol ; 115(6): 996-998, 2024 May 29.
Article En | MEDLINE | ID: mdl-38527802

Glycosylated RNA molecules that can be bound by lectins have been demonstrated on the surfaces of leukocytes, but their physiologic function(s) was not known. A recent study (PMID 38262409) demonstrates that at least 1 function is to promote capture and rolling of neutrophils in the vasculature. Of interest, the neutrophil glycosylated RNA molecules bind to P-selectin but not E-selectin.


Neutrophils , Humans , Neutrophils/metabolism , Animals , Glycosylation , Leukocyte Rolling , RNA/metabolism , E-Selectin/metabolism , P-Selectin/metabolism , Cell Membrane/metabolism
5.
Am J Pathol ; 194(5): 628-636, 2024 May.
Article En | MEDLINE | ID: mdl-38309429

Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.


Extracellular Traps , Neutrophils , Humans , Neutrophil Infiltration , Neutrophils/metabolism , Lung , Extracellular Traps/metabolism
6.
Pediatrics ; 153(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38332740

OBJECTIVES: Remdesivir decreases the risk of SARS-CoV-2 infection progressing to severe disease in adults. This study evaluated remdesivir safety and pharmacokinetics in infants and children. METHODS: This was a phase 2/3, open-label trial in children aged 28 days to 17 years hospitalized for polymerase chain reaction-confirmed SARS-CoV-2 infection. Participants received for ≤10 days once-daily intravenous remdesivir doses defined using physiologically based pharmacokinetic modeling (for ≥40 kg, 200 mg day 1, then 100 mg/day; for age ≥28 days and ≥3 to <40 kg, 5 mg/kg day 1, then 2.5 mg/kg/day). Sparse pharmacokinetic samples were analyzed using population-pharmacokinetic approaches for remdesivir and metabolites GS-704277 and GS-441524. RESULTS: Among 53 participants, at enrollment the median (Q1, Q3) number of days of COVID-19 symptoms was 5 (3, 7) and hospitalization was 1 (1, 3). Underlying conditions included obesity in 19 (37%), asthma in 11 (21%), and cardiac disorders in 11 (21%). Median duration of remdesivir treatment was 5 days (range, 1-10). Remdesivir treatment had no new apparent safety trends. Two participants discontinued treatment because of adverse events including elevated transaminases; both had elevated transaminases at baseline. Three deaths occurred during treatment (and 1 after). When compared with phase 3 adult data, estimated mean pediatric parameters (area under the concentration-time curve over 1 dosing interval, AUCτ, Cmax, and Cτ) were largely overlapping but modestly increased (remdesivir, 33%-129%; GS-704277, 37%-124%; GS-441524, 0%-60%). Recovery occurred for 62% of participants on day 10 and 83% at last assessment. CONCLUSIONS: In infants and children with COVID-19, the doses of remdesivir evaluated provided drug exposure similar to adult dosing. In this study with a small sample size, no new safety concerns were observed.


Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 , Child, Hospitalized , Adult , Infant , Humans , Child , COVID-19 Drug Treatment , SARS-CoV-2 , Pyrroles , Transaminases
7.
PLoS One ; 19(1): e0290837, 2024.
Article En | MEDLINE | ID: mdl-38236941

The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.


Mammary Neoplasms, Experimental , Mice , Rats , Female , Humans , Animals , Mice, Transgenic , Mammary Neoplasms, Experimental/pathology , Mammary Tumor Virus, Mouse/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Ubiquitin Thiolesterase/genetics
8.
Neuro Oncol ; 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38271182

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.

9.
J Pediatric Infect Dis Soc ; 13(2): 144-147, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38219024

To characterize nirsevimab in the prevention of RSV, children from the Phase 3 MELODY trial were followed through their second RSV season. No increase in medically attended RSV lower respiratory tract infections or evidence of antibody-dependent enhancement of infection or disease severity was found for nirsevimab vs placebo recipients. Clinical Trial Registration: Clinicaltrials.gov, NCT03979313, https://clinicaltrials.gov/ct2/show/NCT03979313.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Antibodies, Monoclonal, Humanized/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control , Seasons
10.
J Clin Invest ; 134(2)2024 Jan 16.
Article En | MEDLINE | ID: mdl-38015629

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.


Brain , Dementia, Vascular , Receptor, Notch3 , Animals , Humans , Mice , Brain/metabolism , CADASIL/genetics , CADASIL/pathology , Dementia, Vascular/metabolism , Mice, Knockout , Mutation , Receptor, Notch3/genetics
11.
Clin Trials ; 21(3): 390-396, 2024 Jun.
Article En | MEDLINE | ID: mdl-38140914

BACKGROUND/AIMS: The SARS-CoV-2 pandemic disproportionately impacted communities with lower access to health care in the United States, particularly before vaccines were widely available. These same communities are often underrepresented in clinical trials. Efforts to ensure equitable enrollment of participants in trials related to treatment and prevention of Covid-19 can raise concerns about exploitation if communities with lower access to health care are targeted for recruitment. METHODS: To enhance equity while avoiding exploitation, our site developed and implemented a three-part recruitment strategy for pediatric Covid-19 vaccine studies. First, we publicized a registry for potentially interested participants. Next, we applied public health community and social vulnerability indices to categorize the residence of families who had signed up for the registry into three levels to reflect the relative impact of the pandemic on their community: high, medium, and low. Finally, we preferentially offered study participation to interested families living in areas categorized by these indices as having high impact of the Covid-19 pandemic on their community. RESULTS: This approach allowed us to meet goals for study recruitment based on public health metrics related to disease burden, which contributed to a racially diverse study population that mirrored the surrounding community demographics. While this three-part recruitment strategy improved representation of minoritized groups from areas heavily impacted by the Covid-19 pandemic, important limitations were identified that would benefit from further study. CONCLUSION: Future use of this approach to enhance equitable access to research while avoiding exploitation should test different methods to build trust and communicate with underserved communities more effectively.


COVID-19 Vaccines , COVID-19 , Health Services Accessibility , Patient Selection , Humans , COVID-19 Vaccines/therapeutic use , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/supply & distribution , COVID-19/prevention & control , Patient Selection/ethics , Child , United States , Pilot Projects , Clinical Trials as Topic/ethics , SARS-CoV-2 , Registries , Pandemics , Female
12.
J Pediatr Pharmacol Ther ; 28(8): 693-703, 2023.
Article En | MEDLINE | ID: mdl-38094673

OBJECTIVE: Characterize levetiracetam pharmacokinetics (PK) in children with obesity to inform dosing. METHODS: Children 2 to <21 years old receiving standard of care oral levetiracetam across two opportunistic studies provided blood samples. Levetiracetam plasma PK data were analyzed with a nonlinear mixed-effects modeling approach. Indirect measures for body size and covariates were tested for model inclusion. Individual empirical Bayesian estimates using the final model parameters were compared by obesity status. Monte Carlo simulation using total body weight was performed in children with normal estimated glomerular filtration rate to identify dosing for children with obesity that resulted in comparable exposures to normal weight adults and children after receiving label dosing. RESULTS: The population PK model was developed from 341 plasma concentrations from 169 children. A 1-compartment model best fit the data with fat-free mass as a significant covariate. Compared with children with normal weight, children with obesity had significantly lower body weight-normalized clearance (median [range], 4.77 [1.49-10.44] and 3.71 [0.86-13.55] L/h/70 kg, respectively). After label dosing with the oral formulation in children with obesity 4 to <16 years old, maximum and minimum steady-state concentrations were higher (25% and 41%, respectively [oral solution] and 27% and 19%, respectively [tablet]) compared with children with normal weight. Comparable exposures between children with and without obesity were achieved with weight-tiered dosing regimens of <75 kg or ≥75 kg. CONCLUSIONS: Weight-tiered dosing for levetiracetam oral solution and tablets for children with obesity 4 to <16 years old results in more comparable exposures to children of normal weight.

13.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38039967

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Extracellular Traps , Triple Negative Breast Neoplasms , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cytokines , Extracellular Traps/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
15.
Virol J ; 20(1): 246, 2023 10 27.
Article En | MEDLINE | ID: mdl-37891657

BACKGROUND: Persistent SARS-CoV-2 infection in immunocompromised hosts is thought to contribute to viral evolution by facilitating long-term natural selection and viral recombination in cases of viral co-infection or superinfection. However, there are limited data on the longitudinal intra-host population dynamics of SARS-CoV-2 co-infection/superinfection, especially in pediatric populations. Here, we report a case of Delta-Omicron superinfection in a hospitalized, immunocompromised pediatric patient. METHODS: We conducted Illumina whole genome sequencing (WGS) for longitudinal specimens to investigate intra-host dynamics of SARS-CoV-2 strains. Topoisomerase PCR cloning of Spike open-reading frame and Sanger sequencing of samples was performed for four specimens to validate the findings. Analysis of publicly available SARS-CoV-2 sequence data was performed to investigate the co-circulation and persistence of SARS-CoV-2 variants. RESULTS: Results of WGS indicate the patient was initially infected with the SARS-CoV-2 Delta variant before developing a SARS-CoV-2 Omicron variant superinfection, which became predominant. Shortly thereafter, viral loads decreased below the level of detection before resurgence of the original Delta variant with no residual trace of Omicron. After 54 days of persistent infection, the patient tested negative for SARS-CoV-2 but ultimately succumbed to a COVID-19-related death. Despite protracted treatment with remdesivir, no antiviral resistance mutations emerged. These results indicate a unique case of persistent SARS-CoV-2 infection with the Delta variant interposed by a transient superinfection with the Omicron variant. Analysis of publicly available sequence data suggests the persistence and ongoing evolution of Delta subvariants despite the global predominance of Omicron, potentially indicative of continued transmission in an unknown population or niche. CONCLUSION: A better understanding of SARS-CoV-2 intra-host population dynamics, persistence, and evolution during co-infections and/or superinfections will be required to continue optimizing patient care and to better predict the emergence of new variants of concern.


COVID-19 , Coinfection , Superinfection , Humans , Child , SARS-CoV-2/genetics , Immunocompromised Host
16.
J Pediatric Infect Dis Soc ; 12(9): 487-495, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37589394

BACKGROUND: Adjunctive diagnostic studies (aDS) are recommended to identify occult dissemination in patients with candidemia. Patterns of evaluation with aDS across pediatric settings are unknown. METHODS: Candidemia episodes were included in a secondary analysis of a multicenter comparative effectiveness study that prospectively enrolled participants age 120 days to 17 years with invasive candidiasis (predominantly candidemia) from 2014 to 2017. Ophthalmologic examination (OE), abdominal imaging (AbdImg), echocardiogram, neuroimaging, and lumbar puncture (LP) were performed per clinician discretion. Adjunctive diagnostic studies performance and positive results were determined per episode, within 30 days from candidemia onset. Associations of aDS performance with episode characteristics were evaluated via mixed-effects logistic regression. RESULTS: In 662 pediatric candidemia episodes, 490 (74%) underwent AbdImg, 450 (68%) OE, 426 (64%) echocardiogram, 160 (24%) neuroimaging, and 76 (11%) LP; performance of each aDS per episode varied across sites up to 16-fold. Longer durations of candidemia were associated with undergoing OE, AbdImg, and echocardiogram. Immunocompromised status (58% of episodes) was associated with undergoing AbdImg (adjusted odds ratio [aOR] 2.38; 95% confidence intervals [95% CI] 1.51-3.74). Intensive care at candidemia onset (30% of episodes) was associated with undergoing echocardiogram (aOR 2.42; 95% CI 1.51-3.88). Among evaluated episodes, positive OE was reported in 15 (3%), AbdImg in 30 (6%), echocardiogram in 14 (3%), neuroimaging in 9 (6%), and LP in 3 (4%). CONCLUSIONS: Our findings show heterogeneity in practice, with some clinicians performing aDS selectively, potentially influenced by clinical factors. The low frequency of positive results suggests that targeted application of aDS is warranted.


Candidemia , Candidiasis, Invasive , Humans , Child , Aged, 80 and over , Candidemia/diagnosis , Candidemia/microbiology , Candidiasis, Invasive/drug therapy , Logistic Models , Cohort Studies , Risk Factors , Antifungal Agents/therapeutic use
17.
Cell Rep ; 42(8): 112936, 2023 08 29.
Article En | MEDLINE | ID: mdl-37552602

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor ß (TGF-ß)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-ß signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-ß-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-ß and integrin/talin signaling pathways.


Breast Neoplasms , Transforming Growth Factor beta , Humans , Animals , Mice , Female , Transforming Growth Factor beta/metabolism , Breast Neoplasms/pathology , Talin/metabolism , Carrier Proteins , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Integrins/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Neoplasm Metastasis , Cell Movement
18.
Proc Natl Acad Sci U S A ; 120(33): e2303010120, 2023 08 15.
Article En | MEDLINE | ID: mdl-37549258

The regulation of gene expression through histone posttranslational modifications plays a crucial role in breast cancer progression. However, the molecular mechanisms underlying the contribution of histone modification to tumor initiation remain unclear. To gain a deeper understanding of the role of the histone modifier Enhancer of Zeste homology 2 (Ezh2) in the early stages of mammary tumor progression, we employed an inducible mammary organoid system bearing conditional Ezh2 alleles that faithfully recapitulates key events of luminal B breast cancer initiation. We showed that the loss of Ezh2 severely impairs oncogene-induced organoid growth, with Ezh2-deficient organoids maintaining a polarized epithelial phenotype. Transcriptomic profiling showed that Ezh2-deficient mammary epithelial cells up-regulated the expression of negative regulators of Wnt signaling and down-regulated genes involved in mTORC1 (mechanistic target of rapamycin complex 1) signaling. We identified Sfrp1, a Wnt signaling suppressor, as an Ezh2 target gene that is derepressed and expressed in Ezh2-deficient epithelium. Furthermore, an analysis of breast cancer data revealed that Sfrp1 expression was associated with favorable clinical outcomes in luminal B breast cancer patients. Finally, we confirmed that targeting Ezh2 impairs mTORC1 activity through an indirect mechanism that up-regulates the expression of the tumor suppressor Pten. These findings indicate that Ezh2 integrates the mTORC1 and Wnt signaling pathways during early mammary tumor progression, arguing that inhibiting Ezh2 or therapeutically targeting Ezh2-dependent programs could be beneficial for the treatment of early-stage luminal B breast cancer.


Histones , Polycomb Repressive Complex 2 , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histones/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Wnt Signaling Pathway/genetics
19.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37643615

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Transendothelial and Transepithelial Migration , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Cell Adhesion , Cell Movement , Endothelium, Vascular , Mechanotransduction, Cellular , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
20.
PLoS One ; 18(7): e0288622, 2023.
Article En | MEDLINE | ID: mdl-37463144

Phosphatase and tensin homolog (PTEN) mutation is common in prostate cancer during progression to metastatic and castration resistant forms. We previously reported that loss of PTEN function in prostate cancer leads to increased expression and secretion of the Prorenin Receptor (PRR) and its soluble processed form, the soluble Prorenin Receptor (sPRR). PRR is an essential factor required for proper assembly and activity of the vacuolar-ATPase (V-ATPase). The V-ATPase is a rotary proton pump required for the acidification of intracellular vesicles including endosomes and lysosomes. Acidic vesicles are involved in a wide range of cancer related pathways such as receptor mediated endocytosis, autophagy, and cell signalling. Full-length PRR is cleaved at a conserved consensus motif (R-X-X-R↓) by a member of the proprotein convertase family to generate sPRR, and a smaller C-terminal fragment, designated M8.9. It is unclear which convertase processes PRR in prostate cancer cells and how processing affects V-ATPase activity. In the current study we show that PRR is predominantly cleaved by PACE4, a proprotein convertase that has been previously implicated in prostate cancer. We further demonstrate that PTEN controls PRR processing in mouse tissue and controls PACE4 expression in prostate cancer cells. Furthermore, we demonstrate that PACE4 cleavage of PRR is needed for efficient V-ATPase activity and prostate cancer cell growth. Overall, our data highlight the importance of PACE4-mediated PRR processing in normal physiology and prostate cancer tumorigenesis.


Prostatic Neoplasms , Vacuolar Proton-Translocating ATPases , Animals , Humans , Male , Mice , Proprotein Convertases/metabolism , Prorenin Receptor , Prostatic Neoplasms/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
...